Электронные и ионные пушки. Пучковое оружие: ионные пушки Холодной войны Ионная пушка

Некоторые частицы ионной пушки имеют потенциальное практическое применение, например, как противоракетная система обороны или защиты от метеоритов. Однако подавляющее большинство концепций этого оружия относится к миру научной фантастики, где подобного рода пушки присутствуют в большом изобилии. Они известны под многочисленными именами: фазеры, пушки из разряженных частиц, ионные пушки, протонные лучевые орудия, лучевые пушки и т. д.

Концепция

Концепция оружия с частичным пучком исходит из надежных научных принципов и экспериментов, которые в настоящее время проводятся во всем мире. Один эффективный процесс причинения ущерба или уничтожения цели - просто перегреться, пока она в миг не исчезнет. Тем не менее после десятилетий исследований и разработок оружие с частичным пучком все еще находится на стадии исследования, и нам еще предстоит проверить на практике, можно ли использовать подобные пушки в качестве эффективного средства поражения. Многие мечтают собрать ионную пушку своими руками и проверить ее свойства на практике.

Ускорители частиц

Ускорители частиц - это хорошо развитая технология, используемая в научных исследованиях на протяжении десятилетий. Они используют электромагнитные поля для ускорения и направления заряженных частиц по заранее определенному пути, а электростатические «линзы» фокусируют эти потоки на столкновения. Катодно-лучевая трубка во многих телевизорах XX века и компьютерных мониторах - очень простой тип ускорителя частиц. Более мощные версии включают синхротроны и циклотроны, используемые в ядерных исследованиях. Оружие с электронно-лучевым зарядом является доработанной версией этой технологии. Оно ускоряет заряженные частицы (в большинстве случаев электроны, позитроны, протоны или ионизированные атомы, но очень продвинутые версии могут ускорить другие частицы, такие как ядра ртути) почти до скорости света, а затем выпускает их в цель. Эти частицы обладают огромной кинетической энергией, которой они заряжают материю на поверхности мишени, вызывая почти мгновенный и катастрофический перегрев. Это, в сущности, и есть основной принцип работы ионной пушки.

Физические особенности

Основные возможности ионной пушки все-таки сводятся к мгновенному и безболезненному уничтожению цели. Заряженные пучки частиц быстро расходятся из-за взаимного отталкивания, поэтому чаще всего предлагаются нейтральные пучки частиц. Оружие с нейтральным пучком частиц ионизирует атомы путем отгонки электрона от каждого атома или за счет того, чтобы каждый атом мог захватывать дополнительный электрон. Затем заряженные частицы ускоряют и снова нейтрализуют добавлением или удалением электронов.

Ускорители циклотронных частиц, ускорители линейных частиц и ускорители синхротронных частиц могут ускорять положительно заряженные ионы водорода до тех пор, пока их скорость не приближается к скорости света, а каждый отдельный ион имеет кинетическую энергию от 100 Мэв до 1000 МэВ или более. Тогда полученные высокоэнергетические протоны могут захватывать электроны от электрона эмиттерных электродов и таким образом электрически нейтрализоваться. Это создает электрически нейтральный пучок атомов водорода с высокой энергией, который может протекать по прямой линии вблизи скорости света, чтобы разбить ее цель и повредить ее.

Преодолевая скоростные ограничения

Пульсирующий пучок частиц, излучаемый таким оружием, может содержать 1 гигаджоуль кинетической энергии или больше. Скорость луча, приближающаяся к скорости света (299 792 458 м/с в вакууме) в сочетании с энергией, созданной оружием, отрицает любые реалистичные средства защиты цели от пучка. Целевое упрочнение путем экранирования или выбора материалов было бы непрактичным или неэффективным, особенно если пучок мог поддерживаться на полную мощность и точно фокусироваться на цели.

В армии США

Инициатива США в области оборонной стратегии вложила в разработку технологию нейтрального пучка частиц, которая будет использоваться в качестве оружия в космическом пространстве. В Лос-Аламосской национальной лаборатории была разработана технология ускорителя нейтрального луча. Прототип нейтрального водородного лучевого оружия был запущен на борту суборбитальной зондирующей ракеты из ракеты White Sands Missile в июле 1989 года в рамках проекта Beam Experiments Aboard Rocket (BEAR). Он достиг максимальной высоты 124 миль и успешно работал в космосе в течение 4 минут, прежде чем вернуться на Землю. В 2006 году восстановленное экспериментальное устройство было переведено из Лос-Аламоса в Смитсоновский музей воздуха и космонавтики в Вашингтоне, округ Колумбия. Однако полная история разработки ионной пушки скрыта от массового обывателя. Кто знает, каким еще оружием обзавелись американцы за последнее время. Войны будущего могут нас сильно удивить.

Во вселенной "Звездных войн"

В "Звездных войнах" ионные воздушные пушки являются формой вооружения, в результате которой ионизированные частицы, способные разрушать электронные системы, могут даже отключить крупный капитальный корабль. Во время битвы при Острове Сикка продолжающийся огонь этих пушек со стороны нескольких кораблей нанес значительный урон корпусу по меньшей мере одного легкого крейсера класса Арквитенс.

В световом перехватчике класса «Эта-2» использовались такие же пушки, которые изрыгали плазму, что может вызвать временные электрические сбои в механизме при ударе.

Истребители Y-wing также были оснащены этими пушками в первую очередь теми, что использовались Золотой эскадрильей Альянса. Хотя их поле огня было несколько ограничено, ионные пушки были достаточно мощными, и было достаточно трех взрывов, чтобы отключить командный крейсер Arquitens, и только один, чтобы полностью отключить истребитель TIE / D Defender. Это было продемонстрировано во время перестрелки в туманности Архейон.

В начале Войны клонов оснастила массивный тяжелый крейсер Суджугатора с огромными ионными пушками. С командованием генерала Гривуса этот крейсер напал на десятки военных кораблей Республики и дал им сполна почувствовать разрушительную мощь ионного оружия. После битвы при Абрегадо Республика узнала о них.

Ионные пушки Ярости были отключены Теневой эскадрильей Республики во время битвы вблизи Туманности Калиида. Гигантский крейсер позже был разрушен, когда джедай-генерал Энакин Скайуокер захватил корабль изнутри и заставил его врезаться в Мертвую Луну Антара.

Во время раннего восстания против Галактической Империи бомбардировщики «Золотой эскадрильи» были оснащены ионными пушками. Крейсеры MC75, используемые Альянсом повстанцев, были вооружены тяжелыми ионными креплениями.

Во время Галактической гражданской войны Союз повстанцев использовал стационарную пушку, стреляющую ионами, чтобы отключить Звездные разрушители Эскадрильи смерти во время эвакуации Базы Эха.

Программа для DDOS

Low Orbit Ion Cannon (низкоорбитальная ионная пушка) - это сетевая утилита с открытым исходным кодом и приложение для атаки на отказ в обслуживании, написанное на языке C #. LOIC был первоначально разработан Praetox Technologies, но позже был выпущен для бесплатного общественного пользования и теперь размещен на нескольких платформах с открытым исходным кодом.

LOIC выполняет DoS-атаку (или, при использовании несколькими лицами, DDoS-атаку) на целевом сайте, наводя сервер TCP или UDP-пакетами с целью нарушения службы конкретного хоста. Люди использовали LOIC для присоединения к добровольным бот-сетям.

Программное обеспечение вдохновило на создание независимой версии JavaScript под названием JS LOIC, а также на веб-версию LOIC под названием Low Orbit Web Cannon (Низкоорбитальная веб-пушка). Она позволяет совершать DoS-атаку прямо из веб-браузера.

Способ защиты

Эксперты по безопасности, цитируемые "Би-Би-Си", указали, что хорошо продуманные настройки брандмауэра могут отфильтровывать большую часть трафика от DDoS-атак через LOIC, тем самым предотвращая полную эффективность этих самых атак. По крайней мере в одном случае фильтрация всех UDP и ICMP-трафика блокировала атаку LOIC. Поскольку провайдеры интернет-услуг обеспечивают меньшую пропускную способность для каждого из своих клиентов, чтобы обеспечить гарантированные уровни обслуживания для всех своих клиентов одновременно, правила брандмауэра такого типа более эффективны, если они реализованы в точке, расположенной выше по потоку от интернет-восходящего канала сервера приложений. Другими словами, легко заставить провайдера отказаться от трафика, предназначенного для клиента, отправив больше трафика, чем разрешено ему, и любая фильтрация, которая возникает на стороне клиента после того, как трафик проходит эту ссылку, не может запретить поставщику услуг отказаться от избыточного трафика, предназначенного для этого пользователя. Так и совершается атака.

Атаки LOIC легко идентифицируются в системных журналах, и атака может быть отслежена вплоть до используемых IP-адресов.

Главное оружие анонимов

LOIC был использован группировкой "Анонимус" во время Project Chanology, чтобы атаковать веб-сайты Церкви сайентологии, и затем успешно атаковать веб-сайт Ассоциации звукозаписывающих компаний Америки в октябре 2010. Затем приложение снова было использовано анонимусами во время их операции Occupy в декабре 2010 года для атаки на сайты компаний и организаций, которые выступали против WikiLeaks.

В ответ на закрытие службы обмена файлами Megaupload и ареста четырех сотрудников члены группировки "Анонимус" начали DDoS-атаки на веб-сайты Universal Music Group (компания, ответственная за иск против Megaupload), Министерства юстиции Соединенных Штатов, Бюро по защите авторских прав Соединенных Штатов, Федерального бюро расследований, MPAA, Warner Music Group и RIAA, а также HADOPI, во второй половине дня 19 января 2012 года - через ту самую "пушку", позволяющую совершать атаки на любой сервер.

Приложение LOIC названо в честь ионной пушки, вымышленного оружия из многих научно-фантастических работ, видеоигр, и, в частности, серии игр Command & Conquer. Трудно назвать игру, в которой бы не было оружия с таким названием. Например, в игре Stellaris ионная пушка играет немаловажную роль, несмотря на то, что эта игра является экономической стратегией, пусть и с космическим сеттингом.

Изобретение относится к технике получения импульсных мощных ионных пучков. Ионная пушка позволяет получать пучки с большой плотностью ионного тока на внешней мишени. Катод пушки выполнен в виде витка с отверстиями для вывода ионного пучка. Внутри катода расположен анод со скруглениями на своих торцах и плазмообразующими участками напротив отверстий в катоде. Поверхности анода и катода со стороны вывода ионного пучка выполнены в виде части соосных цилиндрических поверхностей. Катод выполнен составным из двух пластин. Катодная пластина, имеющая отверстия для вывода пучка, с обеих своих концов соединена с корпусом посредством штыревых гребенок. Вторая катодная пластина с обеих своих концов подсоединена к выводам двух источников тока разной полярности также посредством штыревых гребенок, встречных к штыревым гребенкам первой пластины. Вторые выводы источников тока соединены с корпусом пушки, и расстояние между соседними штырями в штыревых гребенках выбирается меньшим, чем анод-катодный зазор. Такое выполнение ионной пушки позволяет значительно ослабить поперечное магнитное поле в закатодном пространстве и получить баллистически сходящийся мощный ионный пучок. 2 ил.

Изобретение относится к ускорительной технике и может быть использовано для генерации мощных ионных пучков. Практическое использование мощных ионных пучков в технологических целях часто предъявляет требования достижения максимально возможной плотности ионного пучка на поверхности мишени. Такие пучки необходимы при снятии покрытий и очистке поверхности деталей от нагара, нанесении пленок из материала мишени и т.д. При этом необходимо обеспечивать большой ресурс работы ионной пушки и стабильность параметров генерируемого пучка. Известно устройство, предназначенное для получения сфокусированного на ось мощного ионного пучка (а.с. N 816316 "Ионная пушка для накачки лазеров" Быстрицкий В.М., Красик Я.Е., Матвиенко В.М. и др. "Магнитно - изолированный диод с B полем", Физика плазмы, 1982, т.8, в.5, с 915-917). Это устройство состоит из цилиндрического катода, имеющего продольные прорези вдоль своей образующей и предназначенные для вывода ионного пучка во внутрикатодное пространство. К концам катода, выполненного в виде беличьего колеса, подключен источник тока, создающий изолирующее магнитное поле. Цилиндрический анод, имеющий плазмообразующее покрытие на своей внутренней поверхности, расположен коаксиально с катодом. При срабатывании источника тока и поступлении положительного высоковольтного импульса на анод образующиеся из материала анодного покрытия ионы ускоряются в анод-катодном зазоре и баллистически фиксируются на ось системы. Высокая степень фокусировки достигается благодаря отсутствию поперечного магнитного поля в закатодном пространстве и распространению ионного пучка в условиях, близких к бессиловому дрейфу. Недостатком этого устройства является невозможность получения сфокусированного ионного пучка, выходящего из пушки для облучения мишеней, расположенных вне ее. Наиболее близкое к предлагаемому устройство по а. с. N 1102474 "Ионная пушка" выбрано за прототип. Эта ионная пушка содержит катод, выполненный в виде разомкнутого плоского витка с отверстиями для вывода ионного пучка и плоский анод, расположенный внутри катода и имеющий скругления на своих торцах. На аноде, напротив отверстий в катоде, располагаются плазмообразующие участки. К разомкнутым концам катода подключен источник тока и между этими же концами катода расположен тонкий проводящий экран, выполненный в виде полуцилиндра и имеющий электрический контакт с обоими концами катода. Этот тонкий экран задает цилиндрическую геометрию распределения электрического поля на этом участке ионной пушки, что снижает локальные потери электронов на анод в этом месте. Низкая механическая прочность тонкого экрана является недостатком данного устройства, что снижает ресурс непрерывной работы ионной пушки. Простое увеличение толщины экрана невозможно, поскольку в этом случае экран начинает существенно шунтировать источник тока и значительно искажать распределение магнитного поля вблизи себя. При срабатывании источника тока в анод-катодном зазоре создается изолирующее поперечное магнитное поле для электронного потока. Ионы пересекают ускоряющий зазор лишь с незначительным отклонением от прямолинейной траектории. Пройдя через катодные отверстия, ионный пучок нейтрализуется холодными электронами, вытягиваемыми из стенок катода. При выходе из катодных отверстий нейтрализованный по заряду пучок начинает распространятся в области, где существует поперечное магнитное поле. В ионной пушке используется быстрое магнитное поле (десятки микросекунд) и массивные электроды, "непрозрачные" для таких полей, что упрощает геометрическую юстировку системы и магнитную изоляцию (В.М. Быстрицкий, А.Н. Диденко "Мощные ионные пучки". - М.: Энергоатомиздат. 1984, с. 57-58). Поскольку силовые линии магнитного поля замкнуты и охватывают катод, не проникая в массивные электроды, то ионный пучок при своем движении от катодных щелей до заземленного корпуса (или соединенной с ним мишени) пересекает магнитный поток, по величине близкий потоку в анод-катодном зазоре. Наличие поперечного магнитного поля в закатодном пространстве резко ухудшает условия транспортировки, и углы расходимости ионного пучка достигают 10 o в закатодном пространстве. Таким образом, остается актуальной задача создания ионной пушки, предназначенной для получения сфокусированного ионного пучка на внешней мишени, обладающей высокой надежностью и большим ресурсом работы. Для решения этой задачи ионная пушка, как и прототип, содержит корпус, в котором размещены катод в виде витка с отверстиями для вывода ионного пучка, анод со скруглениями на торцах, расположенный внутри катода и имеющий плазмообразующие участки напротив отверстий катода. Разомкнутые концы катода подсоединены к источнику тока. Со стороны вывода ионного пучка поверхности анода и катода выполнены в виде части соосных цилиндрических поверхностей. В отличие от прототипа ионная пушка содержит второй источник тока, а виток катода выполнен составным из двух пластин. При этом первая катодная пластина с отверстиями для вывода ионного пучка с обеих своих концов соединена с корпусом ионной пушки посредством штыревых гребенок. Вторая катодная пластина также посредством штыревых гребенок, встречных к штыревым гребенкам первой пластины, с обеих своих концов соединяется с выводами двух источников тока разной полярности. Вторые выводы источников тока соединены с корпусом. Такое выполнение катода позволяет отделить область анод-катодного зазора, где существует быстрое изолирующее магнитное поле, от области дрейфа ионного пучка, где поперечное магнитное поле должно отсутствовать. В этой конструкции катодная пластина с отверстиями для вывода мощного ионного пучка является своеобразным магнитным экраном для быстрого поля. На фиг. 1 приведена предлагаемая ионная пушка. Устройство содержит катод, выполненный в виде двух пластин 1 и 2. Пластина 1 имеет отверстия 3 для вывода пучка и соединена с обеих своих сторон с корпусом 4 ионной пушки посредством двух штыревых гребенок 5. Вторая катодная пластина 2 соединена с выводами двух разнополярных источников тока 6 посредством встречно-направленных к гребенкам 5 штыревых гребенок 7. Вторые выводы источников тока 6 соединены с корпусом ионной пушки 4. Поверхность катодной пластины 1 изогнута в виде части цилиндрической поверхности так, что в области 8 находится ось цилиндра. Внутри составного катодного витка находится плоский анод 9, имеющий скругления на своих торцах и плазмообразующия покрытие 10, расположенные напротив отверстий 3 в пластине 1. Анод 10 также изогнут в виде части цилиндрической поверхности и имеет с катодом общую ось, являющуюся в данном случае фокусом 8 системы. На фиг. 2 приведена конструкция встречных штыревых гребенок 5 и 7, соединяющих катодные пластины 1 и 2 с корпусом 4 и источниками тока 6. Устройство работает следующим образом. Включаются разнополярные источники тока 6, выводы которых соединены с корпусом пушки 4 и пластиной 2 через штыревые гребенки 7. По цепи - корпус 4, первый источник тока 6, штыревая гребенка 7, катодная пластина 2, вторая штыревая гребенка 7, второй источник тока 6, корпус 4 - протекает ток, создающий изолирующее поле в анод-катодном зазоре. Магнитное поле, создаваемое током, протекающим по катодной пластине 2, ограничено катодной пластиной 1, соединенной своими обеими концами с корпусом ионной пушки 4 посредством штыревых гребенок 5, встречно-направленных к гребенкам 7. В этом случае катодная пластина 1 является экраном для быстрого поля, которое не проникает в закатодную область, расположенную от щелей 3 до фокального пятна 8. При этом по поверхности электрода 1, обращенной к аноду, протекает наведенный ток, поверхностная плотность которого близка к поверхностной плотности тока по пластине 2, и в области встречно-направленных штыревых гребенок 5 и 7, расстояние между соседними штырями которых выбирается меньше анод-катодного зазора, создается магнитное поле, близкое к полю в области расположения выводных отверстий 3. Симметрия схемы ионной пушки приводит к тому, что в области транспортировки ионного пучка от щелей 3 до фокального пятна 8 имеются только слабые рассеянные поля по сравнению с магнитными полями в анод-катодном зазоре. В момент максимума магнитного поля в анод-катодном промежутке на анод 9 от генератора высоковольтных импульсов (на чертеже не показан) подается импульс положительной полярности. Плотная плазма, образованная на плазмообразующих участках 10 поверхности анода, служит источником ускоряемых ионов. Ионы, ускоряясь в анод-катодном промежутке, проходят через отверстия 3 в катоде и транспортируются в закатодном пространстве к области фокального пятна 8. По сравнению с прототипом, где величина поперечного магнитного поля вблизи катода за щелями достигает 40% от амплитуды поля в анод-катодном зазоре, в данном устройстве остаточное поле может быть легко снижено до долей процента. При этом реализуется дрейф ионного пучка к мишени, близкий к бессиловому. Поскольку поверхности анода 9 и катода 1 со стороны вывода ионного пучка имеют цилиндрическую геометрию, то ионы, выходящие из щелей 3, будут баллистически фокусироваться на ось 8. Степень фокусировки будет в основном ограничиваться аберрациями пучка на катодных щелях и температурой анодной плазмы. По сравнению с прототипом, в несколько раз увеличивается достижимая плотность ионного пучка на мишени при одинаковых параметрах высоковольтного генератора.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Ионная пушка, содержащая расположенные в корпусе катод, выполненный в виде витка, подключенного к источнику тока и имеющего отверстия для вывода пучка, анод со скруглениями на торцах, расположенный внутри катода и имеющий плазмообразующие участки напротив отверстий катода, и поверхности анода и катода со стороны вывода ионного пучка изогнуты в виде части соосных цилиндрических поверхностей, отличающаяся тем, что содержит второй источник тока, виток катода выполнен составленным из двух пластин, при этом катодная пластина, имеющая отверстия для вывода ионного пучка, с обеих своих концов соединена с корпусом ионной пушки посредством штыревых гребенок, а вторая катодная пластина подсоединена к выводам двух источников тока разной полярности посредством штыревых гребенок, встречных к штыревым гребенкам первой пластины, вторые выводы источников тока соединены с корпусом пушки.

Пучковое оружие - насколько оно реально?

Камера перезарядки пучковой пушки.

("Крылатые ракеты в морском бою" Б.И. Родионова, Н.Н. Новикова, изд. Воениздат, 1987 года.)

Пучковое оружие

Вот мы и добрались до пресловутой ионной пушки. Впрочем, пучок заряженных частиц - это не
обязательно ионы. Это могут быть электроны, протоны и даже мезоны. Можно разгонять и
нейтральные атомы или молекулы.

Суть метода состоит в том, что заряженные частицы, обладающие массой покоя, разгоняются в
линейном ускорителе до релятивистских (порядка скорости света) скоростей и превращаются в
своеобразные «пули» с высокой пробивной способностью.

На заметку: первые попытки взять на вооружение пучковое оружие относятся к 1994 году.
Исследовательская лаборатория ВМФ США провела серию испытаний, в ходе которых выяснилось,
что пучок заряженных частиц способен пробить проводящий канал в атмосфере и без особых
потерь распространяться в нем на расстоянии нескольких километров. Предполагалось
использовать пучковое оружие для борьбы с самонаводящимися противокорабельными ракетами.
При энергии «выстрела» 10 кДж повреждалась электроника наведения на цель, импульс в 100 кДж
подрывал боевой заряд, а 1 МДж приводил к механическому разрушению ракеты. Однако
совершенствование других способов борьбы с противокорабельными ракетами сделало их
дешевле и надежнее, поэтому пучковое оружие во флоте не прижилось.

Зато исследователи, работающие в рамках СОИ, обратили на него самое пристальное внимание.
Однако первые же эксперименты в вакууме показали, что направленный пучок заряженных частиц
невозможно сделать параллельным. Причина - электростатическое отталкивание одноименных
зарядов и искривление траектории в магнитном поле Земли (в этом случае - именно сила Лоренца).
Для орбитального космического оружия это было неприемлемо, поскольку речь шла о передаче
энергии на тысячи километров с высокой точностью.

Разработчики пошли по другому пути. В ускорителе разгонялись заряженные частицы (ионы), а
затем в специальной камере перезарядки они становились нейтральными атомами, но скорости
при этом практически не теряли. Пучок нейтральных атомов может распространяться сколь угодно
далеко, двигаясь практически параллельно.

Факторов поражения у пучка атомов несколько. В качестве разгоняемых частиц используются
протоны (ядра водорода) или дейтроны (ядра дейтерия). В камере перезарядки они становятся
атомами водорода или дейтерия, летящими со скоростями в десятки тысяч километров в секунду.

Попадая в цель, атомы легко ионизируются, теряя единственный электрон, при этом глубина
проникновения частиц увеличивается в десятки и даже сотни раз. В результате происходит
термическое разрушение металла.

Кроме того, при торможении частиц пучка в металле возникнет так называемое «тормозное
излучение», распространяющееся по ходу движения пучка. Это рентгеновские кванты жесткого
диапазона и рентгеновские кванты.

В итоге, даже если обшивка корпуса не будет пробита пучком ионов, тормозное излучение с
большой вероятностью уничтожит экипаж и выведет из строя электронику.

Также под воздействием пучка частиц высокой энергии в обшивке будут наводиться вихревые
токи, рождающие электромагнитный импульс.

Таким образом, пучковое оружие обладает тремя поражающими факторами: механическое
разрушение, направленное гамма-излучение и электромагнитный импульс.

Однако «ионная пушка», описанная в фантастике и фигурирующая во многих компьютерных
играх, - это миф. Ни в каком варианте подобному оружию, находящемуся на орбите, не удастся
пробить атмосферу и поразить какую-либо цель на поверхности планеты. С таким же успехом
ее жителей можно бомбить подшивками газет или рулонами туалетной бумаги. Ну, разве что
планета лишена атмосферы, а ее жители, не нуждающиеся в дыхании, свободно разгуливают по улицам городов.

Основная цель пучкового оружия - боевые блоки ракет на заатмосферном участке, челночные
корабли и аэрокосмические самолеты класса «Спираль».

ПУЧКОВОЕ ОРУЖИЕ

Поражающим фактором пучкового оружия является остронаправленный пучок заряженных или
нейтральных частиц высоких энергий – электронов, протонов, нейтральных атомов водорода.
Мощный поток энергии, переносимый частицами, может создать в материале цели интенсивное
тепловое воздействие, ударные механические нагрузки, инициировать рентгеновское излучение.
Применение пучкового оружия отличается мгновенностью и внезапностью поражающего действия.
Ограничивающим фактором по дальности действия этого оружия являются частицы газов,
находящиеся в атмосфере, с атомами которых взаимодействуют разогнанные частицы, постепенно
теряя свою энергию.

Наиболее вероятными объектами поражения пучкового оружия может быть живая сила,
электронное оборудование, различные системы вооружения и военной техники: баллистические и
крылатые ракеты, самолеты, космические аппараты и т.п. Работы по созданию пучкового оружия
получили наибольший размах вскоре после провозглашения президентом США Рональдом Рейганом
программы СОИ.

Центром научных исследований в этой области стала Лос-Аламосская национальная лаборатория.
Эксперименты в ту пору проводились на ускорителе ATS, затем на более мощных ускорителях.
При этом специалисты полагают, что такие ускорители частиц явятся надежным средством
селекции атакующих боеголовок ракет противника на фоне «облака» ложных целей. Исследования
пучкового оружия на основе электронов ведутся также в Ливерморской национальной лаборатории.
По заявлению некоторых ученых, там предпринимались успешные попытки получить поток
высокоэнергетических электронов, по мощности превосходящий в сотни раз получаемый в
исследовательских ускорителях.

В этой же лаборатории в рамках программы «Антигона» было экспериментально установлено,
что электронный пучок почти идеально, без рассеяния, распространяется по ионизированному
каналу, предварительно созданному лучом лазера в атмосфере. Установки пучкового оружия имеют
большие массово-габаритные характеристики и поэтому могут создаваться как стационарные либо
на специальной подвижной технике большой грузоподъемности.

PS: случайно в широко известном коммьюнити science_freaks завязался спор о реальности
систем пучкового оружия, причём оппоненты всё больше выступали именно за его нереальность.
Пошарив в открытых всему инету источниках, нарыл массу информации, часть которой привёл
выше. Интересует, кто что может сказать обоснованно по наличию действующих и перспективам
разработки новых систем вооружений, относимых к пучковому оружию?

Военные развитых стран постоянно ищут принципиальной новые виды вооружений, чтобы иметь тактическое и стратегическое преимущество. В свое время, одним из перспективных видов стратегических вооружений была так называемая ионная пушка, которая вместо снарядов использует ионы или нейтральные атомы.

В фантастических произведениях подобное оружие называется бластерами, дезинтеграторами и еще кучей разных названий. В принципе, современные технологии вполне позволяют создать подобное оружие в металле, однако, есть ряд ограничений, которые не позволяют использовать данное оружие даже в стратегических целях.

История ионной пушки началась в США, когда заокеанские военные стали искать новые способы нейтрализации советских ракет с разделяющимися боеголовками. При облучении летящего боевого блока ракеты ионами, возникали помехи, вызванные сбоями в полупроводниковых приборах, вихревые токи создавали помехи в исполнительных механизмах. Если обычный блок практически не имел управляющей электроники, то при облучении он продолжал лететь по той же траектории. А при облучении боевого блока ракета должна была начать рыскать из стороны в сторону. Таким образом, ионная пушка должна была помочь быстро отличить боевые блоки от имитаций.

Исследования данного вида вооружения начались в Лос-Аламосе, там, где была создана первая атомная бомба. Через некоторое время, появились первые результаты. Оказалось, что пучок частиц или лазерный луч мощностью в десять тысяч джоулей легко дезориентировал навигационный блок ракеты. Луч с мощностью в сто тысяч джоулей может вызвать детонацию боезаряда летящей ракеты за счет электростатической индукции, а вот луч в миллион джоулей просто повреждал всю электронику ракеты настолько, что она переставала функционировать.

При технической реализации ионной пушки, возник ряд технический трудностей. Первая проблема заключалась в том, что одноименно заряженные ионы просто не могли лететь плотным пучком из-за того что они взаимно отталкивались и вместо плотного и мощного импульса, получался рассеянный и очень слабый. Второй проблемой было то, что ионы взаимодействовали с атомами атмосферы, теряли энергию и рассеивались. Еще одна техническая трудность заключалась в том, что пучок заряженных частиц просто отклонялся от прямолинейной траектории движения за счет взаимодействия с магнитным полем.

Эти технические трудности были преодолены интересными техническими решениями. Перед основным пучком частиц, излучался мощный лазерный импульс, который ионизировал воздух на своем пути и создавал разряжение, так необходимое для движения пучка частиц. Непосредственно в конструкцию ускорителя частиц было внесено изменение, была установлена дополнительная камера, где разогнанные ионы соединялись с электронами и излучались уже нейтральными атомами. Нейтральные атомы не взаимодействовали с магнитным полем Земли и двигались прямолинейно в ионизированном канале.

Другая проблема, которая встала на пути разработчиков такого оружия не может быть решена даже с помощью самых современных технологий. Эта проблема заключается в том, что нет компактного и очень мощного источника энергии, способного обеспечить функционирование такого оружия. Рядом с такой ионной пушкой надо строить отдельную электростанцию, что совершенно неприемлемо в виду высоких затрат и демаскировки.

Самонаводящийся ускоритель частиц. Бабах! Полгорода эта штучка зажарит.
Капрал Хикс, х/ф «Чужие»

В фантастической литературе и кинематографе используется множество пока не существующих типов . Это и различные бластеры, и лазеры, и рельсовые пушки, и много что еще. По некоторым таким направлениям сейчас идут работы в разных лабораториях, но особых успехов пока не наблюдается, а массовое практическое применение подобных образцов начнется, как минимум, через пару десятков лет.

Среди прочих фантастических классов оружия иногда упоминаются т.н. ионные пушки. Их также иногда называют пучковыми, атомными или частичными (такой термин используется гораздо реже по причине специфического звучания). Суть этого оружия заключается в разгоне каких-либо частиц до околосветовых скоростей с последующим направлением их в сторону цели. Такой пучок атомов, обладая колоссальной энергией, может нанести серьезный урон противнику даже кинетическим способом, не говоря уже об ионизирующем излучении и других факторах. Выглядит заманчиво, не так ли, господа военные?

В рамках работ по Стратегической Оборонной Инициативе в Соединенных Штатах рассматривалось несколько концепций средств перехвата вражеских ракет. Среди прочих изучалась и возможность использования ионных орудий. Первые работы по теме начались в 1982-83 году в Лос-Аламосской национальной лаборатории на ускорителе ATS. Позже начали использовать другие ускорители, а потом в исследованиях заняли и Ливерморскую национальную лабораторию. Помимо непосредственных исследований на предмет перспектив ионного оружия, в обеих лабораториях пытались также повышать энергию частиц, естественно с оглядкой на военное будущее систем.

Несмотря на затраты времени и сил, проект исследований пучкового оружия «Антигона» был выведен из программы СОИ. С одной стороны, это можно было рассматривать как отказ от неперспективного направления, с другой – как продолжение работ по проекту, имеющему будущее, независимо от заведомо провокационной программы. К тому же в конце 80-х «Антигону» перевели из стратегической противоракетной обороны в корабельную: почему так сделали, Пентагон не уточнил.

В ходе исследований по воздействию лучевого и ионного оружия на цель было выяснено, что пучок частиц/лазерный луч с энергией порядка 10 килоджоулей способен сжечь аппаратуру самонаведения ПКР. 100 кДж в соответствующих условиях уже могут вызвать электростатическую детонацию заряда ракеты, а пучок в 1 МДж делает из ракеты, в прямом смысле, нанорешето, что приводит и к уничтожению всей электроники, и к подрыву боезаряда. В начале 90-х появилось мнение, что ионные пушки все-таки можно использовать в стратегической противоракетной обороне, но не в качестве средства поражения. Предлагалось стрелять пучками частиц с достаточной энергией по «облаку», состоящему из боевых блоков стратегических ракет и ложных целей. По задумке авторов этой концепции, ионы должны были выжигать электронику боевых блоков и лишать их возможности маневрировать и наводиться на цель. Соответственно, по резкому изменению поведения метки на радаре после залпа можно было вычислять боевые блоки.

Однако перед исследователями в ходе работ встала проблема: в использовавшихся ускорителях можно было разгонять исключительно заряженные частицы. А у этой «мелюзги» есть одна неудобная особенность – они не хотели лететь дружным пучком. Из-за одноименного заряда частицы отталкивались и вместо точного мощного выстрела получалось множество гораздо более слабых и рассеянных. Еще одна проблема, связанная со стрельбой ионами заключалась в искривлении их траектории под действием магнитного поля Земли. Возможно именно поэтому ионные пушки в стратегическую ПРО не пустили – там требовалась стрельба на большие расстояния, где искривление траекторий мешало нормальной работе. В свою очередь, использованию «ионометов» в атмосфере мешало взаимодействие выстреленных частиц с молекулами воздуха.

Первая проблема, с кучностью, была решена путем введения в пушку специальной камеры перезарядки, расположенной после разгонного блока. В ней ионы возвращались в нейтральное состояние и уже не отталкивались друг от друга после вылета из «дула». Заодно немного уменьшилось взаимодействие частиц-пуль с частицами воздуха. Позже, в ходе экспериментов с электронами, было выяснено, что для достижения наименьшего рассеивания энергии и обеспечения максимальной дальности стрельбы, перед выстрелом нужно подсветить цель специальным лазером. Благодаря этому в атмосфере создается ионизированный канал, по которому электроны проходят с меньшими потерями энергии.

После введения в состав пушки камеры перезарядки было отмечено небольшое повышенное ее боевых качеств. В такой версии пушки в качестве снарядов использовались протоны и дейтроны (ядра дейтерия, состоящие из протона и нейтрона) – в камере перезарядки они присоединяли к себе электрон и летели к цели в виде атомов водорода или дейтерия соответственно. При ударе о цель атом теряет электрон, рассеивает т.н. тормозное излучение и продолжает движение внутри цели в виде протона/дейтрона. Также под действием освободившихся электронов в металлической цели возможно появление вихревых токов со всеми последствиями.

Однако все работы американских ученых так и остались в лабораториях. Приблизительно к 1993 году были подготовлены эскизные проекты систем противоракетной обороны для кораблей, но дальше них дело так и не пошло. Ускорители частиц с приемлемой для боевого применения мощностью имели такой размер и требовали такого количества электроэнергии, что за кораблем с пучковой пушкой должна была следовать баржа с отдельной электростанцией. Читатель, знакомый с физикой, может сам посчитать, сколько мегаватт электричества требуется, чтобы придать протону хотя бы 10 кДж. На такие расходы американские военные пойти не могли. Программу «Антигона» приостановили, а потом и вовсе закрыли, хотя время от времени появляются сообщения разной степени достоверности, в которых говорится о возобновлении работ по теме ионного оружия.

Советские ученые не отставали в области разгона частиц, но о военном применении ускорителей долго не раздумывали. Для оборонной промышленности СССР были характерны постоянные оглядки на стоимость оружия, поэтому от идей боевых ускорителей отказались, не начав по ним работы.

На данный момент в мире насчитывается несколько десятков различных ускорителей заряженных частиц, но среди них нет ни одного боевого, пригодного для практического применения. Лос-аламосский ускоритель с камерой перезарядки лишился последней и теперь используется в других исследованиях. Что до перспектив ионного оружия, то саму идею пока придется положить под сукно. До тех пор, пока у человечества не появятся новые, компактные и сверхмощные источники энергии.

В продолжение темы:
Животные

. ТАГАНАИТ , -а, м. – то же, что авантюрин . # Наименование по горе Таганай на Урале. ТАЛЬКОВЫЙ ШЕРЛ – то же, что кианит . ТАНГИВАИТ , -а, м. – то же, что антигорит....

Новые статьи
/
Популярные