Развертки кривых поверхностей. Развертка конуса

Цель лекции: изучение свойств развертки и способов построения разверток многогранников и поверхностей вращения

· Развертка поверхностей. Общие понятия.

· Способы построения разверток: методы триангуляции, нормального сечения и раскатки.

· Построение разверток гранных поверхностей и поверхностей вращения.

Развертка поверхностей. Общие понятия

Развертка плоская фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения граней или иных элементов поверхности друг на друга). Развертку можно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся , а полученную плоскую фигуру – ее разверткой.
Основные свойства развертки 1 Длины двух соответствующих линий поверхности и ее развертки равны между собой; 2 Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке; 3 Прямой на поверхности соответствует также прямая на развертке; 4 Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке; 5 Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Методы триангуляции, нормального сечения и раскатки

Построение разверток гранных поверхностей и поверхностей вращения

а) Развертка поверхности многогранника.

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Метод триангуляции

Пример 1. Развертка пирамиды (рисунок 13.1).

При построении развертки пирамиды применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих.

Рисунок 13.1. Пирамида и её развертка

Для этого необходимо знать натуральную величину ребер и сторон основания. Алгоритм построения можно сформулировать следующим образом (рисунок 13.2):

Рисунок 13.2. Определение истинной величины

основания и ребер пирамиды

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К 0 и К ÎSАD , а иллюстрацией второго случая являются точки М 0 и М 0 * . Для определения точки К 0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S 0 М 0 и, наконец, точки К 0 .

Рисунок 13.3. Построение развертки пирамиды

Способ нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пример 2. Развертка призмы (рисунок 13.4).

Пересекая призму вспомогательной плоскостью α , перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1 , 2 , 3 , а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 1 0 -1 0 * , равный периметру нормального сечения. Через точки 1 0 , 2 0 , 3 0 и 1 0 * проводят прямые, перпендикулярные 1 0 -1 0 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 1 0 , отложены отрезки 1 0 D 0 =1 4 D 4 и 1 0 А 0 =1 4 А 4 .. Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Способ раскатки

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рисунок 13.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Рисунок 13.4. Развертка призмы способом нормального сечения

Рисунок 13.5. Развертка призмы способом раскатки

Затем новую проекцию призмы вращают вокруг ребра С 4 F 4 до тех пор пока грань ACDF не станет параллельной плоскости П 4 .

При этом положение ребра С 4 F 4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П 1 то на эту плоскость проекций они проецируются без искажения, т.е. R =A 1 C 1 =D 1 F 1 ), расположенных в плоскостях, перпендикулярных ребру С 4 F 4 .

Таким образом, траектории движения точек A и D на плоскость П 4 проецируются в прямые, перпендикулярные ребру С 4 F 4 .

Когда грань ACDF станет параллельна плоскости П 4 , она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF . Таким образом, засекая перпендикуляры, по которым перемещаются точки A 4 и D 4 дугой радиуса R =A 1 C 1 =D 1 F 1 , можно получить искомое положение точек развертки A 0 и D 0 .

Следующую грань АBDE вращают вокруг ребра AD . На перпендикулярах, по которым перемещаются точки B 4 и E 4 делают засечки из точек A 0 и D 0 дугой радиуса R =A 1 B 1 =D 1 E 1 . Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П 4 и проходящую через ребро С 4 F 4 .

Построение на развертке точки К , принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

б) Развертка цилиндрической поверхности.

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рисунок 13.6). Чем больше углов в призме, тем точнее развертка (при n → призма преобразуется в цилиндр).

в) Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рисунок 13.6).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l , а центральный угол φ =360 о r / l , где r – радиус окружности основания конуса.

Рисунок 13.6. Развертка цилиндрической поверхности

Рисунок 13.7. Развертка конической поверхности

Контрольные вопросы

1 Что называют разверткой поверхности?

2 Какие поверхности называют развертывающимися и какие – неразвертывающимися?

3 Укажите основные свойства разверток

4 Укажите последовательность графических построений разверток поверхностей конуса и цилиндра.

5 Какие способы построения разверток многогранников вы знаете?


Короткий путь http://bibt.ru

Развертки усеченного цилиндра и конуса.

Для построения развертки усеченного цилиндра вычерчивают усеченный цилиндр в двух проекциях (вид спереди и вид сверху), затем делят окружность на равное число частей, например на 12 (рис. 243). С правой стороны от первой проекции проводят прямую линию АБ, равную выпрямленной длине окружности, и делят ее на такое же количество равных частей, т. е. на 12. Из точек деления 1, 2, 3 и т. д. на линии АБ восстанавливают перпендикуляры, а из точек 1, 2, 3 и т. д., лежащих на окружности, проводят прямые, параллельные осевой до пересечения их с наклонной линией сечения.

Рис. 243. Построение развертки усеченного цилиндра

Теперь на каждом перпендикуляре откладывают циркулем вверх от линии АБ отрезки, равные по высоте отрезкам, обозначенным на проекции вида спереди номерами соответствующих точек. Для ясности два таких отрезка отмечены фигурными скобками. Полученные точки на перпендикулярах соединяют плавной кривой.

Построение развертки боковой поверхности конуса показано на рис. 244, а. Вычерчивают в натуральную величину боковую проекцию конуса по заданным размерам диаметра и высоты. Измеряют циркулем длину образующей конуса, обозначенной буквой R. Чертят циркулем с установленным радиусом дугу вокруг центра О, являющегося крайней точкой произвольно проведенной прямой ОА.

От точки А по дуге откладывают (циркулем небольшими отрезками) длину развернутой окружности, равную πD. Полученную крайнюю точку В соединяют с центром О дуги. Фигура АОВ будет разверткой боковой поверхности конуса.

Развертка боковой поверхности усеченного конуса строится, как показано на рис. 244,б. По высоте и диаметрам верхнего и нижнего оснований усеченного конуса в натуральную величину вычерчивают профиль усеченного конуса. Образующие конуса продолжают до пересечения их в точке О. Эта точка является центром, из нее проводят дуги, равные длинам окружностей основания и вершины усеченного конуса. Для этого делят основание конуса на семь частей. Каждую такую часть, т. е. 1/7 часть диаметра D, откладывают по большой дуге 22 раза и из образующейся точки В проводят прямую к центру дуги О. После соединения точки О с точками А и В получают развертку боковой поверхности усеченного конуса.

Построение разверток


К атегория:

Медницко-жестяницкие работы

Построение разверток

Чтобы изготовить пустотелые изделия различной формы, нужно разметить на листе развертку этого изделия. Наиболее часто составляющие части изделия имеют формы цилиндра и конуса, поэтому рассмотрим построение разверток этих фигур.

Развертка прямого цилиндра представляет собой прямоугольник (рис. 1, а), ширина которого равна высоте цилиндра Н, а длина - длине окружности цилиндра. Для определения этой длины диаметр цилиндра D умножают на число 3,14, обозначаемое в формулах греческой буквой п.

Длина окружности цилиндра определится по формуле L = nD = 3.14D.

Например, если цилиндр имеет диаметр 100 мм, то длина развертки L = 3,14 100 = 314 мм. При этом расчете

he учитывают длину материала, идущего на соединительный шов. Полная длина развертки равна длине окружности плюс припуск на шов.

Рис. 1. Построение развертки цилиндра; а - прямого: о - усеченного

Развертка усеченного цилиндра представлена на рисунке 5 б. В натуральную величину вычерчены две проекции усеченного цилиндра: вид сбоку и вид сверху (план). Окружность круга (основания цилиндра) делят на несколько равных частей, проще всего на 12; в результате получают точки 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Эти точки соединяют линиями, перпендикулярными диаметру 1-7,

с наклонной линией верхней проекции 1‘-7’. При пересечении получают точки Г; 2’, 12’; 3’, 11’; 4’, 10’; 5’, 9’; 6’, 8’ и 7’. Вправо от верхней проекции проводят линию АБ, которая является продолжением линии аб (основания верхней проекции) и по длине равняется длине окружности основания цилиндра (L = 3,14D). Линию АБ делят на 12 равных частей. Из каждой точки на линии АБ восстанавливают перпендикуляры, а из каждой точки на наклонной Г-V проводят линии, параллельные прямой АБ, до пересечения с этими перпендикулярами. Пересечение линии, проведенной из точки 1’, с перпендикуляром, восстановленным из точки 1 на линии АБ, даст точку I развертки; пересечение линии, проведенной из точки 2’, с перпендикуляром, восстановленным из точки 2, даст точку II развертки и т. д. Соединив все полученные точки плавной кривой, получают развертку усеченного цилиндра в натуральную величину. Если изделие соединяется фальцевыми швами, к развертке прибавляют припуск на швы.

Рис. 2. Построение развертки конуса; а - прямого; б - усеченного

Развертка конуса приведена на рисунке 2а. Для ее построения вычерчивают в натуральную величину боковую проекцию конуса, которая представляет собой треугольник. Высота треугольника равна высоте конуса (h), а основание - диаметру окружности, лежащей в основании конуса (D). На боковой проекции конуса измеряют циркулем сторону треугольника, обозначенную на рисунке буквой, и, не изменяя развода циркуля, проводят рядом с проекцией часть окружности радиусом, равным. От точки А, лежащей на дуге этой окружности, откладывают расстояние, равное L = 3,14D. Для этого берут тонкую проволоку длиной L = 3,14D и от точки А откладывают ее по дуге. Там, где проволока кончится, отмечают точку Б и соединяют точки А и Б с центром О. Полученная фигура АОБ - развертка боковой поверхности конуса. При соединении конуса фальцевым швом прибавляют припуск на шов.

Для ускорения и упрощения построения развертки основание треугольника (боковой проекции конуса) делят на 7 частей, а затем, отмерив циркулем одну такую часть, откладывают от точки А по дуге 22 такие части. В этом случае длина дуги АБ будет равняться 3.14D, так как если представить число 3,14 простой дробью, то оно выглядит как 22/7.

Развертка боковой поверхности усеченного конуса показана на рисунке 2. Построение ее аналогично построению развертки для неусеченного конуса.


С развертками поверхностей мы часто встречаемся в обыденной жизни, на производстве и в строительстве. Чтобы изготовить футляр для книги (рис. 169), сшить чехол для чемодана, покрышку для волейбольного мяча и т. п., надо уметь строить развертки поверхностей призмы, шара и других геометрических тел. Разверткой называется фигура, полученная в результате совмещения поверхности данного тела с плоскостью. Для одних тел развертки могут быть точными, для других — приближенными. Точные развертки имеют все многогранники (призмы, пирамиды и др.), цилиндрические и конические поверхности и некоторые другие. Приближенные развертки имеют шар, тор и другие поверхности вращения с криволинейной образующей. Первую группу поверхностей будем называть развертывающимися, вторую — неразвертывающимися.

TBegin-->TEnd-->

TBegin-->
TEnd-->

При построении разверток многогранников придется находить действительную величину ребер и граней этих многогранников с помощью вращения или перемены плоскостей проекций. При построении приближенных разверток для неразвертывающихся поверхностей придется заменять участки последних близкими к ним по форме развертывающимися поверхностями.

Для построения развертки боковой поверхности призмы (рис. 170) считают.что плоскость развертки совпадает с гранью AADD призмы; с этой же плоскостью совмещают другие грани призмы, как это показано на рисунке. Грань ССВВ предварительно совмещают с гранью ААВВ. Линии сгибов в соответствии с ГОСТ 2.303—68 проводят тонкими сплошными линиями толщиной s/3-s/4. Точки на развертке принято обозначать теми же буквами, как и на комплексном чертеже, но с индексом 0 (нулевое). При построении развертки прямой призмы по комплексному чертежу (рис. 171, а) высоту граней берут с фронтальной проекции, а ширину — с горизонтальной. Развертку принято строить так, чтобы к наблюдателю была обращена лицевая сторона поверхности (рис. 171, б). Это условие важно соблюдать потому, что некоторые материалы (кожа, ткани) имеют две стороны: лицевую и оборотную. К одной из граней боковой поверхности пристраивают основания призмы ABCD.

Если на поверхности призмы задана точка 1, то на развертку ее переносят с помощью двух отрезков, помеченных на комплексном чертеже одним и двумя штрихами, первый отрезок С1l1 откладывают вправо от точки С0, а второй отрезок — по вертикали (к точке l0).

TBegin-->
TEnd-->

Аналогично строят развертку поверхности цилиндра вращения (рис. 172). Делят поверхность цилиндра на определенное количество равных частей, например на 12, и развертывают вписанную поверхность правильной двенадцатиугольной призмы. Длина развертки при таком построении получается несколько меньше действительной длины развертки. Если требуется значительная точность, то применяют графо-аналитический способ. Диаметр d окружности основания цилиндра (рис. 173, а) умножают на число π = 3,14; полученный размер используют в качестве длины развертки (рис. 173, б), а высоту (ширину) берут непосредственно с чертежа. К развертке боковой поверхности пристраивают основания цилиндра.

TBegin-->
TEnd-->

Если на поверхности цилиндра задана точка А, например между 1 и 2-й образующими, то ее место на развертке находят с помощью двух отрезков: хорды, отмеченной утолщенной линией (правее точки l1), и отрезка, равного расстоянию точки А от верхнего основания цилиндра, помеченного на чертеже двумя штрихами.

Значительно труднее построение развертки пирамиды (рис. 174, а). Ее ребра SA и SC являются прямыми общего положения и проецируются на обе плоскости проекций искажением. Прежде чем строить развертку, необходимо найти действительную величину каждого ребра. Величину ребра SB находят путем построения его третьей проекции, поскольку это ребро параллельно плоскости П 3 . Ребра SA и SC вращают вокруг горизонтально-проецирующей оси, проходящей через вершину S настолько, чтобы они стали параллельными фронтальной плоскости проекций П, (таким же способом может быть найдена действительная величина ребра SB).

TBegin-->
TEnd-->

После такого вращения их фронтальные проекции S 2 A 2 и S 2 C 2 будут равны действительной величине ребер SA и SC. Стороны основания пирамиды, как горизонтальные прямые, без искажения проецируются на плоскость проекций П 1 . Имея три стороны каждой грани и пользуясь способом засечек, легко построить развертку (рис. 174, б). Построение начинают с передней грани; на горизонтальной прямой откладывают отрезок A 0 С 0 =A 1 C 1 , первую засечку делают радиусом A 0 S 0 — A 2 S 2 вторую — радиусом C 0 S 0 = = G 2 S 2 ; в пересечении засечек получают точку S„. Принимают заказу сторону A 0 S 0 ; из точки A 0 делают засечку радиусом A 0 В 0 =A 1 B 1 из точки S 0 делают засечку радиусом S 0 B 0 =S 3 B 3 ; в пересечении засечек получают точку В 0 . Аналогично к стороне S 0 G 0 пристраивают грань S 0 B 0 C 0 . В заключение, к стороне A 0 С 0 пристраивают треугольник основания A 0 G 0 S 0 . Длины сторон этого треугольника можно взять непосредственно с развертки, как показано на чертеже.

Развертку конуса вращения строят так же, как и развертку пирамиды. Делят окружность основания на равные части, например на 12 частей (рис. 175, а), и представляют, что в конус вписана правильная двенадцатиугольная пирамида. Первые три грани показаны на чертеже. Разрезают поверхность конуса по образующей S6. Как известно из геометрии, развертка конуса изображается сектором круга, у которого радиус равен длине образующей конуса l. Все образующие кругового конуса равны, поэтому действительная длина образующей l равна фронтальной проекции левой (или правой) образующей. От точки S 0 (рис. 175, б) по вертикали откладывают отрезок 5000 =l. Этим радиусом проводят дугу окружности. От точки O 0 откладывают отрезки Оl 0 = O 1 l 1 , 1 0 2 0 = 1 1 2 1 и т. д. Отложив шесть отрезков, получают точку 60, которую соединяют с вершиной S0. Аналогично строят левую часть развертки; снизу пристраивают основание конуса.

TBegin-->
TEnd-->

Если требуется нанести на развертку точку В, то проводят через нее образующую SB (в нашем случае S 2), наносят эту образующую на развертку (S 0 2 0); вращая образующую с точкой В вправо до совмещения ее с образующей S 3 (S 2 5 2), находят действительное расстояние S 2 B 2 и откладывают его от точки S 0 . Найденные отрезки помечены на чертежах тремя штрихами.

Если на развертке конуса не требуется наносить точки, то она может быть построена быстрее и точнее, поскольку известно, что угол сектора развертки a=360°R/l радиус окружности основания, а l — длина образующей конуса.

Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.

В продолжение темы:
Место для тату

Многие люди привыкли ассоциировать ягоды с малиной или клубникой, но такую особенную ягоду, как слива, частенько забывают. К чему снятся сливы во сне? Как утверждает сонник,...

Новые статьи
/
Популярные