Как работает электронно-лучевая трубка? Что такое электронно-лучевая трубка.

.
Электронно-лучевые трубки, действие которых основано на формировании и управлении по интенсивности и положению одним или более электронными пучками, классифицируют по назначению и способу управления электронным пучком. В зависимости от назначения ЭЛТ подразделяют на приемные, передающие, запоминающие и др. В качестве индикаторных приборов используют приемные трубки. По способу управления электронным пучком ЭЛТ подразделяют на трубки с электростатическим и магнитным управлением. В первых для управления пучком электронов применяют электрическое поле, а во вторых - магнитное.

Электронно-лучевые трубки с электростатическим управлением обеспечивают более высокие частотные свойства, поэтому их широко используют в качестве индикаторов электронных осциллографов. Рассмотрим работу электронно-лучевой трубки с электростатическим управлением, конструкция которой схематически показана на рисунке ниже.

Она представляет собой стеклянную колбу, в узкой части которой расположены электронный прожектор (ЭП) и отклоняющая система (ОС). В торцевой части колбы находится экран (Э), покрытый специальным составом - люминофором, способным светиться при бомбардировке электронным пучком. Электронный прожектор состоит из подогреваемого нитью накала (Н), катода (К), модулятора (М) и двух анодов (А, и А2).

Электроны, покинувшие катод, образуют электронное облако, которое под действием поля анодов движется в сторону экрана, формируясь в электронный пучок. Этот пучок проходит модулятор, выполненный в виде пологого цилиндра с отверстием и донной части. К модулятору прикладывается отрицательное относительно катода напряжение в несколько десятков вольт. Это напряжение создает тормозящее поле, предварительно фокусирующее электронный пучок и изменяющее яркость свечения экрана. Для получения требуемой энергии (скорости) электронного пучка на аноды подается положительное относительно катода напряжение: на анод A1 - порядка нескольких сотен, а на анод А2- нескольким тысяч вольт. Значение напряжения для анода А2 выбирают из условия установки фокуса второй электростатической линзы в плоскости экрана.

Отклоняющая система ЭЛТ состоит из двух пар взаимно перпендикулярных пластин, расположенных симметрично относительно оси колбы. Напряжение, прикладываемое к пластинам, искривляет траекторию электронного пучка, вызывая тем самым откло­нение светового пятна на экране. Значение этого отклонения прямо пропорционально напряжению на пластинах ОС и обратно пропорционально напряжению Uа на втором аноде.

(рисунок ниже), как и ЭЛТ с электростатическим управлением, включает в себя ЭП и ОС. Конструкции ЭП обеих трубок аналогичны.

Предварительная фокусировка электронного пучка в трубке с магнитным управлением также осуществляется двумя электростатическими линзами, образованными соответственно электрическими полями между модулятором и первым анодом и между первым и вторым анодами. В функции первого анода, называемого иногда ускоряющим электродом, дополнительно входит экранировка модулятора от второго анода, что почти полностью исключает зависимость яркости свечения экрана от напряжения второго анода.

Внутри ЭЛТ расположен еще один электрод, называемый аквадагом (АК). Аквадаг электрически соединен с вторым анодом. Основная фокусировка электронного пучка производится неоднородным магнитным полем фокусирующей катушки (ФК), конструктивно расположенной на горловине колбы ЭЛТ. Это поле, возникающее при протекании по ФК постоянного тока, придает электронам вращательное движение вокруг оси пучка, фокусируя его в плоскости экрана.

Магнитная ОС содержит две пары последовательно включенных взаимно перпендикулярных обмоток, конструктивно выполненных в виде единого блока. Результирующее поле, создаваемое этими обмотками, заставляет электроны двигаться по окружности, радиус которой обратно пропорционален напряженности магнитного поля. Покидая поле, электроны пучка двигаются по касательной к исходной траектории, отклоняясь от геометрической оси колбы.

При этом отклонение электронного пучка в ЭЛТ с магнитным управлением меньше зависит от значения ускоряющего напряжения на аноде А2, чем отклонение пучка в ЭЛТ с электростатическим управлением. Поэтому при заданном значении напряжения на втором аноде ЭЛТ с магнитным управлением обеспечивает больший угол отклонения электронного пучка, чем ЭЛТ с электростатическим управлением, что позволяет значительно уменьшить ее размеры. Типовое значение максимального угла отклонения в ЭЛТ с магнитным управлением составляет 110°, а в ЭЛТ с электростатическим управлением - не превышает 30°.

Соответственно при заданных значениях отклонения электронного пучка ЭЛТ с магнитным управлением работает с большими значениями напряжения второго анода, чем ЭЛТ с электростатическим управлением, что позволяет повысить яркость получаемого изображения. К сказанному следует добавить, что ЭЛТ с магнитным управлением обеспечивает лучшую фокусировку электронного пучка, а следовательно, и лучшее качество изображения, что и предопределило их широкое распространение в качестве индикаторных устройств дисплеев ЭВМ. Рассмотренные ЭЛТ обеспечивают монохроматический режим отображения информации. В настоящее время все большее распространение находят ЭЛТ с цветным изображением.

(рисунок ниже) реализует принцип получения цветных образов как сумму изображений красного, зеленого и синего цветов.

Изменяя относительную яркость каждого из них, можно изменять цвет воспринимаемого изображения. Поэтому конструктивно ЭЛТ содержит три самостоятельных ЭП, пучки которых сфокусированы на некотором расстоянии от экрана. В плоскости пересечения лучей расположена цветоотделительная маска - тонкая металлическая пластина с большим числом отверстий, диаметр которых не превышает 0,25 мм. Экран цветной ЭЛТ неоднороден и состоит из множества люминесцирующих ячеек, число которых равно числу отверстий маски. Ячейка составлена из трех круглых элементов люминофора, светящихся красным, зеленым или синим цветом.

Например, цветной кинескоп с размером экрана по диагонали 59 см имеет маску с более чем полумиллионом отверстий, а общее число люминесцирующих элементов экрана превышает 1,5 млн. Пройдя через отверстия маски, электронные пучки расходятся. Расстояние между маской и экраном подобрано так, чтобы после прохождения отверстия маски электроны каждого пучка попадали на элементы экрана, люминесцирующие определенным цветом. Из-за малых размеров светящихся элементов экрана глаз человека уже на небольшом удалении не способен различать их и воспринимает суммарное свечение всех ячеек, интегральные цвета которых зависят от интенсивности электронного пучка каждого ЭП.

Если на модуляторы всех трех ЭП подать равные напряжения, то световые элементы экрана будут светиться одинаково и результирующий цвет будет восприниматься как белый. При синхронном изменении напряжении на модуляторах яркость белого цвета изменяется. Следовательно, подавая на модуляторы равные напряжения, можно получить все градации свечения экрана - от ярко-белого до черного. Таким образом, цветные кинескопы могут без искажений воспроизводить и черно-белое изображение.

Ю.Ф.Опадчий, Аналоговая и цифровая электроника, 2000 г.

Электронно-лучевая трубка (ЭЛТ) - электронный прибор, имеющий форму трубки, удлиненной (часто с коническим расширением) в направлении оси электронного луча, который формируется в ЭЛТ. ЭЛТ состоит из электронно-оптической системы, отклоняющей системы и флуоресцентного экрана или мишени. Ремонт телевизоров в Бутово , обращайтесь к нам за помощью.

Классификация ЭЛТ

Классификация ЭЛТ чрезвычайно затруднена, что объясняется их чрезвычайн

о широким применением в науке и технике и возможностью модификации конструкции с целью получения технических параметров, которые необходимы для реализации конкретной технической идеи.

Зависимости от метода управления электронным лучом ЭЛТ подразделяются на:

электростатические (с электростатической системой отклонения лучей);

электромагнитные (с электромагнитной системой отклонения лучей).

В зависимости от назначения ЭЛТ подразделяются на:

электронно-графические трубки (приемные, телевизионные, осциллографические, индикаторные, телевизионные знакодрукувальни, кодирующие и др..)

оптико-электронные претворюючи трубки (передающие телевизионные трубки, электронно-оптические преобразователи и др..)

электронно-лучевые переключатели (коммутаторы);

другие ЭЛТ.

Электронно-графические ЭЛТ

Электронно-графические ЭЛТ - группа электронно-лучевых трубок, применяемых в различных областях техники, для преобразования электрических сигналов в оптические (преобразование типа «сигнал - свет»).

Электронно-графические ЭЛТ подразделяются:

В зависимости от области применения:

приемной телевизионные (кинескопы, ЭЛТ с сверхвысоким разрешением для специальных телевизионных систем, и др..)

приемной осциллографические (низкочастотные, высокочастотные, сверхвысокочастотные, импульсные высоковольтные и др..)

приемной индикаторные;

запоминающие;

знакодрукувальни;

кодирующие;

другие ЭЛТ.

Строение и действие ЭЛТ с электростатической системой отклонения лучей

Электронно-лучевая трубка состоит из катода (1), анода (2), выравнивающего цилиндра (3), экрана (4), регуляторов плоскости (5) и высоты (6).

Под действием фото-или термоэмиссии из металла катода (тонкая проводниковая спираль) выбиваются электроны. Поскольку между анодом и катодом поддерживается напряжение (разность потенциалов) в несколько кило вольт, то эти электроны, выравниваясь цилиндром, движутся по направлению анода (пустотелый цилиндр). Пролетая сквозь анод электроны попадают к регуляторам плоскости. Каждый регулятор - это две металлические пластины, разноименно заряженные. Если левую пластину зарядить отрицательно, а правую положительно, то электроны проходя сквозь них будут отклоняться вправо, и наоборот. Аналогично действуют и регуляторы высоты. Если же на эти пластины подать переменный ток, то можно будет контролировать поток электронов как в горизонтальной, так и вертикальной плоскостях. В конце своего пути поток электронов попадает на экран, где может вызвать изображения.

Электронно-лучевая трубка (ЭЛТ) является тем термоэлектронным прибором, который похоже, не собираются выводить из употребления в ближайшем будущем. ЭЛТ используется в осциллографе для наблюдения электрических сигналов и, конечно, в качестве кинескопа в телевизионном приемнике и монитора в компьютере и радиолокаторе.

ЭЛТ состоит из трех основных элементов: электронной пушки, являющейся источником электронного луча, отклоняющей луч системы, которая может быть электростатической или магнитной, и люминесцентного экрана, испускающего видимый свет в месте падения электронного луча. Все существенные черты ЭЛТ с электростатическим отклонением отражены на рис. 3.14.

Катод испускает электроны, и они летят в сторону первого анода A v на который подается положительное относительно катода напряжение в несколько тысяч вольт. Поток электронов регулируется сеткой, отрицательное напряжение на которой определяется требуемой яркостью. Электронный луч проносится сквозь отверстие в центре первого анода, а также сквозь второй анод, на котором действует немного большее положительное напряжение, чем на первом аноде.

Рис. 3.14. ЭЛТ с электростатическим отклонением. На упрощенной схеме, подключенной к ЭЛТ, показаны регуляторы яркости и фокуса.

Назначение двух анодов состоит в том, чтобы создать между ними электрическое поле с силовыми линиями, искривленными так, чтобы все электроны луча сходились в одном месте на экране. Разность потенциалов между анодами А 1 и Л 2 подбирается с помощью регулятора фокуса таким образом, чтобы получить на экране четко сфокусированное пятно. Эту конструкцию из двух анодов можно рассматривать как электронную линзу. Подобным образом можно создать магнитную линзу, приложив магнитное поле; в некоторых ЭЛТ фокусировка осуществляется именно так. С большим эффектом этот принцип используется также в электронном микроскопе, где может быть применена комбинация электронных линз, обеспечивающая очень большое увеличение с разрешающей способностью, в тысячу раз лучшей, чем у оптического микроскопа.

После анодов электронный луч в ЭЛТ проходит между отклоняющими пластинами, к которым можно прикладывать напряжения для отклонения луча в вертикальном направлении в случае пластин Y ив горизонтальном направлении в случае пластин X. После отклоняющей системы луч попадает на люминесцентный экран, то есть на поверхность, покрытую люминофором.

На первый взгляд, электронам некуда деваться после того, как они ударяются об экран, и можно подумать, что отрицательный заряд на нем будет расти. В действительности этого не происходит, так как энергии электронов в луче достаточно, чтобы вызвать «брызги» вторичных электронов из экрана. Эти вторичные электроны собираются затем проводящим покрытием на стенках трубки. На самом деле с экрана обычно уходит так много заряда, что на нем самом возникает положительный по отношению ко второму аноду потенциал в несколько вольт.

Электростатическое отклонение является стандартом для большинства осциллографов, но это неудобно в отношении больших ЭЛТ, используемых в телевидении. В этих трубках с их огромными экранами (до 900 мм по диагонали) для обеспечения желаемой яркости требуется разгонять электроны в луче до больших энергий (типичное напряжение высоковольтного

Рис. 3.15. Принцип действия магнитной отклоняющей системы, используемый в телевизионных трубках.

источника 25 кВ). Если бы в таких трубках с их очень большим углом отклонения (110°) применялась бы электростатическая система отклонения, то понадобились бы чрезмерно большие отклоняющие напряжения. Для таких приложений стандартом является магнитное отклонение. На рис. 3.15 показана типичная конструкция магнитной отклоняющей системы, где для создания отклоняющего поля используются пары катушек. Обратите внимание на то, что оси катушек перпендикулярны направлению, в котором осуществляется отклонение, в отличие от осевых линий пластин в электростатической отклоняющей системе, которые параллельны направлению отклонения. Это различие подчеркивает, что в электрическом и магнитном полях электроны ведут себя по-разному.

Применение электронно-лучевой трубки

Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

Магнитные трубки применяются в телевизорах.

Принцип работы электронно-лучевой трубки построен на испускании электронов отрицательно заряженным термокатодом, которые затем при­тягиваются положительно заряженным анодом и собираются на нем. Это принцип работы старой электронной лампы с термокатодом.

В ЭЛТ высокоскоростные электроны испускаются электронной пуш­кой (рис. 17.1). Они фокусируются электронной линзой и направляют­ся к экрану, который ведет себя как положительно заряженный анод. Экран покрыт изнутри флуоресцирующим порошком, который начинает светиться под ударами быстрых электронов. Электронный пучок (луч), испускаемый электронной пушкой, создает неподвижное пятно на экра­не. Для того чтобы электронный пучок оставил след (линию) на экране, его нужно отклонять как в горизонтальном, так и в вертикальном напра­влениях - Х и Y.

Рис. 17.1.

Методы отклонения пучка

Существует два метода отклонения пучка электронов в ЭЛТ. В электростатическом методе используются две параллельные пластины, между которыми создается разность электрических потенциалов (рис. 17.2(а)). Электростатическое поле, возникающее между пластинами, отклоняет электроны, попадающие в область действия поля. В электромагнитном методе пучок электронов управляется магнитным полем, создаваемым электрическим током, протекающим через катушку. При этом, как по­казано на рис. 17.2(б), применяются два набора управляющих катушек (в телевизорах они называются отклоняющими катушками). Оба метода обеспечивают линейное отклонение.


Рис. 17.2. Электростатический (а) и электромагнитный (б)

методы отклонения электронного пучка.

Однако метод электростатического отклонения имеет более широкий частотный диапазон, именно поэтому его применяют в осциллографах. Электромагнитное отклонение лучше подходит для высоковольтных трубок (кинескопов), работающих в те­левизорах, и к тому же более компактно в реализации, поскольку обе катушки располагаются в одном и том же месте вдоль горловины теле­визионной трубки.

Конструкция ЭЛТ

На рис. 17.3 дано схематическое представление внутреннего устройства электронно-лучевой трубки с электростатической отклоняющей систе­мой. Показаны различные электроды и соответствующие им потенциалы. Электроны, испускаемые катодом (или электронной пушкой), проходят через небольшое отверстие (апертуру) в сетке. Сетка, потенциал которой отрицателен по отношению к потенциалу катода, определяет интен­сивность или число испускаемых электронов и, таким образом, яркость пятна на экране.


Рис. 17.3.


Рис. 17.4.

Затем электронный пучок проходит сквозь электрон­ную линзу, фокусирующую пучок на экран. Конечный анод А 3 имеет потенциал в несколько киловольт (по отношению к катоду), что соот­ветствует диапазону сверхвысоких напряжений (СВН). Две пары откло­няющих пластин D 1 и D 2 обеспечивают электростатическое отклонение пучка электронов в вертикальном и горизонтальном направлениях соот­ветственно.

Вертикальное отклонение обеспечивают Y-пластины (пластины верти­кального отклонения), а горизонтальное - Х-пластины (пластины гори­зонтального отклонения). Входной сигнал подается на Y-пластины, кото­рые отклоняют электронный пучок вверх и вниз в соответствии с ампли­тудой сигнала.

X-пластины заставляют пучок перемещаться по горизонтали от одно­го края экрана к другому (развертка) с постоянной скоростью и затем очень быстро возвращаться в исходное положение (обратный ход). На Х- пластины подается сигнал пилообразной формы (рис. 17.4), вырабатывае­мый генератором. Этот сигнал называют сигналом временной развертки.

Подавая соответствующим образом сигналы на Х- и Y-пластины, можно получить такое смещение электронного пучка, при котором на экране ЭЛТ будет «прорисовываться» точная форма входного сигнала.

В этом видео рассказывается об основных принципах работы электронно-лучевой трубки:

В продолжение темы:
Блог

Фиброаденома молочной железы является одним из видов узловой мастопатии, которая образуется в результате нарушений эндокринной системы человека и является местным разрастанием...

Новые статьи
/
Популярные