Что такое статистическая значимость при оптимизации конверсии? Статистическая значимость: определение, понятие, значимость, уравнения регрессии и проверка гипотез.

Задачей статистического исследования является выявление закономерностей, лежащих в природе исследуемых явлений. Показатели и средние величины должны служить отображением действительности, для чего необходимо определять степень их достоверности. Правильное отображение выборочной совокупностью генеральной совокупности называется репрезентативностью. Мерой точности и достоверности выборочных статистических величин являются средние ошибки представительности (репрезентативности), которые зависят от численности выборки и степени разнообразия выборочной совокупности по исследуемому признаку.

Поэтому для определения степени достоверности результатов статистического исследования необходимо для каждой относительной и средней величины вычислить соответствующую среднюю ошибку. Средняя ошибка показателя m p вычисляется по формуле:

При числе наблюдений менее 30, где

P - величина показателя в процентах, промилле и т.д.

q - дополнение этого показателя до 100, если он в процентах, до 1000, если % 0 и т.д. (т.е. q = 100–P, 1000–P и т.д.)

Например, известно, что в районе в течение года заболело дизентерией 224 человека. Численность населения ― 33000. Показатель заболеваемости дизентерией на

Средняя ошибка этого показателя

Для решения вопроса о степени достоверности показателя определяют доверительный коэффициент (t), который равен отношению показателя к его средней ошибке, т.е.

В нашем примере

Чем выше t, тем больше степень достоверности. При t=1, вероятность достоверности показателя равна 68,3%, при t=2 ― 95,5%, при t=3 ― 99,7%. В медико-статистических исследованиях обычно используют доверительную вероятность (надежность), равную 95,5%–99,0%, а в наиболее ответственных случаях – 99,7%. Таким образом в нашем примере показатель заболеваемости достоверен.

При числе наблюдений менее 30, значение критерия определяется по таблице Стьюдента. Если полученная величина будет выше или равна табличной ― показатель достоверен. Если ниже ― не достоверен.

При необходимости сравнения двух однородных показателей достоверность их различий определяется по формуле:

(от большего числа отнимают меньшее),

где P 1 –P 2 ― разность двух сравниваемых показателей,

― средняя ошибка разности двух показателей.

Например, в районе Б в течении года заболело дизентерией 270 человек. Население района ― 45000. Отсюда заболеваемость дизентерией:

т.е. показатель заболеваемости достоверен.

Как видно, заболеваемость в районе Б ниже, чем в районе А. Определяем по формуле достоверность разницы двух показателей:

При наличии большого числа наблюдений (более 30) разность показателей является статистически достоверной, если t = 2 или больше. Таким образом, в нашем примере заболеваемость в районе А достоверно выше, т.к. доверительный коэффициент (t) больше 2.

Зная величину средней ошибки показателя, можно определить доверительные границы этого показателя в зависимости от влияния причин случайного характера. Доверительные границы определяются по формуле:

P ― показатель;

m ― его средняя ошибка;

t ― доверительный коэффициент выбирается в зависимости от требуемой величины надежности: t=1 соответствует надежности результата в 68,3% случаев, t=2 – 95,5%, t=2,6 – 99%, t=3 – 99,7%, t=3,3 – 99,9Величина называется предельной ошибкой.

Например, в районе Б показатель заболеваемости дизентерией с точностью до 99,7 9 % может колебаться в связи со случайными факторами в пределах т.е. от 49,1 до 70,9 .

Задание 3. Пяти дошкольникам предъявляют тест. Фиксируется время решения каждого задания. Будут ли найдены статистически значимые различия между временем решения первых трёх заданий теста?

№ испытуемых

Справочный материал

Данное задание основано на теории дисперсионного анализа. В общем случае, задачей дисперсионного анализа является выявление тех факторов, которые оказывают существенное влияние на результат эксперимента. Дисперсионный анализ может применяться для сравнения средних нескольких выборок, если число выборок больше двух. Для этой цели служит однофакторный дисперсионный анализ.

В целях решения поставленных задач принимается следующее. Если дисперсии полученных значений параметра оптимизации в случае влияния факторов отличаются от дисперсий результатов в случае отсутствия влияния факторов, то такой фактор признается значимым.

Как видно из формулировки задачи, здесь используются методы проверки статистических гипотез, а именно – задача проверки двух эмпирических дисперсий. Следовательно, дисперсионный анализ базируется на проверке дисперсий по критерию Фишера. В данном задании необходимо проверить являются ли статистически значимыми различия между временем решения первых трёх заданий теста каждым из шести дошкольников.

Нулевой (основной) называют выдвинутую гипотезу H о. Сущность е сводится к предположению, что разница между сравниваемыми параметрами равна нулю (отсюда и название гипотезы – нулевая) и что наблюдаемые различия имеют случайный характер.

Конкурирующей (альтернативной) называют гипотезу H 1 , которая противоречит нулевой.

Решение:

Методом дисперсионного анализа при уровне значимости α = 0,05 проверим нулевую гипотезу (H о) о существовании статистически значимых различий между временем решения первых трёх заданий теста у шести дошкольников.

Рассмотрим таблицу условия задания, в которой найдем среднее время решения каждого из трех заданий теста

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Групповая средняя

Находим общую среднюю:

Для того, чтобы учесть значимость временных различий каждого теста, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной , а вторая – остаточной

Рассчитаем общую сумму квадратов отклонений вариант от общей средней по формуле

или , где р – число измерений времени решений заданий теста, q – количество испытуемых. Для этого составим таблицу квадратов вариант

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Проверка гипотез проводится с помощью статистического анализа. Статистическую значимость находят с помощью Р-значения, которое соответствует вероятности данного события при предположении, что некоторое утверждение (нулевая гипотеза) истинно. Если Р-значение меньше заданного уровня статистической значимости (обычно это 0,05), экспериментатор может смело заключить, что нулевая гипотеза неверна, и перейти к рассмотрению альтернативной гипотезы. С помощью t-критерия Стьюдента можно вычислить Р-значение и определить значимость для двух наборов данных.

Шаги

Часть 1

Постановка эксперимента

    Определите свою гипотезу. Первый шаг при оценке статистической значимости состоит в том, чтобы выбрать вопрос, ответ на который вы хотите получить, и сформулировать гипотезу. Гипотеза - это утверждение об экспериментальных данных, их распределении и свойствах. Для любого эксперимента существует как нулевая, так и альтернативная гипотеза. Вообще говоря, вам придется сравнивать два набора данных, чтобы определить, схожи они или различны.

    • Нулевая гипотеза (H 0) обычно утверждает, что между двумя наборами данных нет разницы. Например: те ученики, которые читают материал перед занятиями, не получают более высокие оценки.
    • Альтернативная гипотеза (H a) противоположна нулевой гипотезе и представляет собой утверждение, которое нужно подтвердить с помощью экспериментальных данных. Например: те ученики, которые читают материал перед занятиями, получают более высокие оценки.
  1. Установите уровень значимости, чтобы определить, насколько распределение данных должно отличаться от обычного, чтобы это можно было считать значимым результатом. Уровень значимости (его называют также α {\displaystyle \alpha } -уровнем) - это порог, который вы определяете для статистической значимости. Если Р-значение меньше уровня значимости или равно ему, данные считаются статистически значимыми.

    • Как правило, уровень значимости (значение α {\displaystyle \alpha } ) принимается равным 0,05, и в этом случае вероятность обнаружения случайной разницы между разными наборами данных составляет всего лишь 5%.
    • Чем выше уровень значимости (и, соответственно, меньше Р-значение), тем достовернее результаты.
    • Если вы хотите получить более достоверные результаты, понизьте Р-значение до 0,01. Как правило, более низкие Р-значения используются в производстве, когда необходимо выявить брак в продукции. В этом случае требуется высокая достоверность, чтобы быть уверенным, что все детали работают так, как положено.
    • Для большинства экспериментов с гипотезами достаточно принять уровень значимости равным 0,05.
  2. Решите, какой критерий вы будете использовать: односторонний или двусторонний. Одно из предположений в t-критерии Стьюдента гласит, что данные распределены нормальным образом. Нормальное распределение представляет собой колоколообразную кривую с максимальным количеством результатов посередине кривой. t-критерий Стьюдента - это математический метод проверки данных, который позволяет установить, выпадают ли данные за пределы нормального распределения (больше, меньше, либо в “хвостах” кривой).

    • Если вы не уверены, находятся ли данные выше или ниже контрольной группы значений, используйте двусторонний критерий. Это позволит вам определить значимость в обоих направлениях.
    • Если вы знаете, в каком направлении данные могут выйти за пределы нормального распределения, используйте односторонний критерий. В приведенном выше примере мы ожидаем, что оценки студентов повысятся, поэтому можно использовать односторонний критерий.
  3. Определите объем выборки с помощью статистической мощности. Статистическая мощность исследования - это вероятность того, что при данном объеме выборки получится ожидаемый результат. Распространенный порог мощности (или β) составляет 80%. Анализ статистической мощности без каких-либо предварительных данных может представлять определенные сложности, поскольку требуется некоторая информация об ожидаемых средних значениях в каждой группе данных и об их стандартных отклонениях. Используйте для анализа статистической мощности онлайн-калькулятор, чтобы определить оптимальный объем выборки для ваших данных.

    • Обычно ученые проводят небольшое пробное исследование, которое позволяет получить данные для анализа статистической мощности и определить объем выборки, необходимый для более расширенного и полного исследования.
    • Если у вас нет возможности провести пробное исследование, постарайтесь на основании литературных данных и результатов других людей оценить возможные средние значения. Возможно, это поможет вам определить оптимальный объем выборки.

    Часть 2

    Вычислите стандартное отклонение
    1. Запишите формулу для стандартного отклонения. Стандартное отклонение показывает, насколько велик разброс данных. Оно позволяет заключить, насколько близки данные, полученные на определенной выборке. На первый взгляд формула кажется довольно сложной, но приведенные ниже объяснения помогут понять ее. Формула имеет следующий вид: s = √∑((x i – µ) 2 /(N – 1)).

      • s - стандартное отклонение;
      • знак ∑ указывает на то, что следует сложить все полученные на выборке данные;
      • x i соответствует i-му значению, то есть отдельному полученному результату;
      • µ - это среднее значение для данной группы;
      • N - общее число данных в выборке.
    2. Найдите среднее значение в каждой группе. Чтобы вычислить стандартное отклонение, необходимо сначала найти среднее значение для каждой исследуемой группы. Среднее значение обозначается греческой буквой µ (мю). Чтобы найти среднее, просто сложите все полученные значения и поделите их на количество данных (объем выборки).

      • Например, чтобы найти среднюю оценку в группе тех учеников, которые изучают материал перед занятиями, рассмотрим небольшой набор данных. Для простоты используем набор из пяти точек: 90, 91, 85, 83 и 94.
      • Сложим вместе все значения: 90 + 91 + 85 + 83 + 94 = 443.
      • Поделим сумму на число значений, N = 5: 443/5 = 88,6.
      • Таким образом, среднее значение для данной группы составляет 88,6.
    3. Вычтите из среднего каждое полученное значение. Следующий шаг заключается в вычислении разницы (x i – µ). Для этого следует вычесть из найденной средней величины каждое полученное значение. В нашем примере необходимо найти пять разностей:

      • (90 – 88,6), (91- 88,6), (85 – 88,6), (83 – 88,6) и (94 – 88,6).
      • В результате получаем следующие значения: 1,4, 2,4, -3,6, -5,6 и 5,4.
    4. Возведите в квадрат каждую полученную величину и сложите их вместе. Каждую из только что найденных величин следует возвести в квадрат. На этом шаге исчезнут все отрицательные значения. Если после данного шага у вас останутся отрицательные числа, значит, вы забыли возвести их в квадрат.

      • Для нашего примера получаем 1,96, 5,76, 12,96, 31,36 и 29,16.
      • Складываем полученные значения: 1,96 + 5,76 + 12,96 + 31,36 + 29,16 = 81,2.
    5. Поделите на объем выборки минус 1. В формуле сумма делится на N – 1 из-за того, что мы не учитываем генеральную совокупность, а берем для оценки выборку из числа всех студентов.

      • Вычитаем: N – 1 = 5 – 1 = 4
      • Делим: 81,2/4 = 20,3
    6. Извлеките квадратный корень. После того как вы поделите сумму на объем выборки минус один, извлеките из найденного значения квадратный корень. Это последний шаг в вычислении стандартного отклонения. Есть статистические программы, которые после введения начальных данных производят все необходимые вычисления.

      • В нашем примере стандартное отклонение оценок тех учеников, которые читают материал перед занятиями, составляет s =√20,3 = 4,51.

      Часть 3

      Определите значимость
      1. Рассчитайте дисперсию между двумя группами данных. До этого шага мы рассматривали пример лишь для одной группы данных. Если вы хотите сравнить две группы, очевидно, следует взять данные для обеих групп. Вычислите стандартное отклонение для второй группы данных, а затем найдите дисперсию между двумя экспериментальными группами. Дисперсия вычисляется по следующей формуле: s d = √((s 1 /N 1) + (s 2 /N 2)).

Статистическая достоверность имеет существенное значение в расчетной практике ФКС. Ранее было отмечено, что из одной и той же генеральной совокупности может быть избрано множество выборок:

Если они подобраны корректно, то их средние показатели и показатели генеральной совокупности незначительно отличаются друг от друга величиной ошибки репрезентативности с учетом принятой надежности;

Если они избираются из разных генеральных совокупностей, различие между ними оказывается существенным. В статистике по­всеместно рассматривается сравнение выборок;

Если они отличаются несущественно, непринципиально, не­значительно, т. е. фактически принадлежат одной и той же гене­ральной совокупности, различие между ними называется стати­стически недостоверным.

Статистически достоверным различием выборок называется выборка, которая различается значимо и принципиально, т. е. при­надлежит разным генеральным совокупностям.

В ФКС оценка статистической достоверности различий выбо­рок означает решение множества практических задач. Например, введение новых методик обучения, программ, комплексов упраж­нений, тестов, контрольных упражнений связано с их экспери­ментальной проверкой, которая должна показать, что испытуе­мая группа принципиально отлична от контрольной. Поэтому при­меняют специальные статистические методы, называемые крите­риями статистической достоверности, позволяющие обнаружить наличие или отсутствие статистически достоверного различия между выборками.

Все критерии делятся на две группы: параметрические и непараметрические. Параметрические критерии предусматривают обязательное наличие нормального закона распределения, т.е. имеется в виду обязательное определение основных показателей нормального закона - средней арифметической величины и среднего квадратического отклонения s. Параметрические крите­рии являются наиболее точными и корректными. Непараметри­ческие критерии основаны на ранговых (порядковых) отличиях между элементами выборок.

Приведем основные критерии статистической достоверности, используемые в практике ФКС: критерий Стьюдента и критерий Фишера.

Критерий Стьюдента назван в честь английского ученого К. Госсета (Стьюдент - псевдоним), открывшего данный метод. Критерий Стьюдента является параметрическим, используется для сравнения абсолютных показателей выборок. Выборки могут быть различными по объему.

Критерий Стьюдента определяется так.

1. Находим критерий Стьюдента t по следующей формуле:


где - средние арифметические сравниваемых выборок; т 1 , т 2 - ошибки репрезентативности, выявленные на основании показателей сравниваемых выборок.

2. Практика в ФКС показала, что для спортивной работы доста­точно принять надежность счета Р = 0,95.

Для надежности счета: Р = 0,95 (a = 0,05), при числе степеней свободы

k = n 1 + п 2 - 2 по таблице приложения 4 находим величи­ну граничного значения критерия (t гр ).

3. На основании свойств нормального закона распределения в критерии Стьюдента осуществляется сравнение t и t гр.

Делаем выводы:

если t t гр, то различие между сравниваемыми выборками статистически достоверно;

если t t гр, то различие статистически недостоверно.

Для исследователей в области ФКС оценка статистической до­стоверности является первым шагом в решении конкретной зада­чи: принципиально или непринципиально различаются между собой сравниваемые выборки. Последующий шаг заключается в оценке этого различия с педагогической точки зрения, что опре­деляется условием задачи.

Рассмотрим применение критерия Стьюдента на конкретном примере.

Пример 2.14. Группа испытуемых в количестве 18 человек оценена на ЧСС (уд./мин) до х i и после y i разминки.

Оценить эффективность разминки по показателю ЧСС. Исход­ные данные и расчеты представлены в табл. 2.30 и 2.31.

Таблица 2.30

Обработка показателей ЧСС до разминки


Ошибки по обеим группам совпали, так как объемы выборок равны (исследуется одна и та же группа при различных условиях), а средние квадратические отклонения составили s х = s у = 3 уд./мин. Переходим к определению критерия Стьюдента:

Задаем надежность счета: Р= 0,95.

Число степеней свободы k 1 = n 1 + п 2 - 2=18+18-2 = 34. По таблице приложения 4 находим t гр = 2,02.

Статистический вывод. Поскольку t = 11,62, а граничное t гр = 2,02, то 11,62 > 2,02, т.е. t > t гр, поэтому различие между выбор­ками статистически достоверно.

Педагогический вывод. Установлено, что по показателю ЧСС раз­личие между состоянием группы до и после разминки является статистически достоверным, т.е. значимым, принципиальным. Итак, по показателю ЧСС можно сделать вывод, что разминка эффективна.

Критерий Фишера является параметрическим. Он применяет­ся при сравнении показателей рассеивания выборок. Это, как пра­вило, означает сравнение по показателям стабильности спортив­ной работы или стабильности функциональных и технических показателей в практике физической культуры и спорта. Выборки могут быть разновеликими.

Критерий Фишера определяется в нижеприведенной последова­тельности.

1. Находим Критерий Фишера F по формуле


где , - дисперсии сравниваемых выборок.

Условиями критерия Фишера предусмотрено, что в числителе формулы F находится большая дисперсия, т.е. число F всегда больше единицы.

Задаем надежность счета: Р = 0,95 - и определяем числа степеней свободы для обеих выборок: k 1 = n 1 - 1 , k 2 = п 2 - 1.

По таблице приложения 4 находим граничное значение кри­терия F гр .

Сравнение критериев F и F гр позволяет сформулировать вы­воды:

если F > F гр, то различие между выборками статистически достоверно;

если F< F гр, то различие между выборками статически недо­стоверно.

Приведем конкретный пример.

Пример 2.15. Проанализируем две группы гандболистов: х i (n 1 = 16 человек) и y i (п 2 = 18 человек). Эти группы спортсменов исследованы на время отталкивания (с) при броске мяча в во­рота.

Однотипны ли показатели отталкивания?

Исходные данные и основные расчеты представлены в табл. 2.32 и 2.33.

Таблица 2.32

Обработка показателей отталкивания первой группы гандболистов


Определим критерий Фишера:





По данным, представленным в таблице приложения 6, находим Fгр: Fгр = 2,4

Обратим внимание на то, что в таблице приложения 6 пере­числение чисел степеней свободы как большей, так и меньшей дисперсии при приближении к большим числам становится гру­бее. Так, числа степеней свободы большей дисперсии следует в таком порядке: 8, 9, 10, 11, 12, 14, 16, 20, 24 и т.д., а меньшей - 28, 29, 30, 40, 50 и т.д.

Это объясняется тем, что при увеличении объема выборок раз­личия F-критерия уменьшаются и можно использовать табличные значения, приближенные к исходным данным. Так, в примере 2.15 =17 отсутствует и можно принять ближайшее к нему значение k = 16, откуда и получаем Fгр = 2,4.

Статистический вывод. Поскольку критерий Фишера F= 2,5 > F= 2,4, выборки различимы статистически достоверно.

Педагогический вывод. Значения времени отталкивания (с) при броске мяча в ворота у гандболистов обеих групп суще­ственно различаются. Эти группы следует рассматривать как раз­личные.

Дальнейшие исследования должны показать, в чем причина такого различия.

Пример 2.20 .(на статистическую достоверность выборки ). Повысилась ли квалификация футболиста, если время (с) от подачи сигнала до удара по мячу ногой в начале тренировки было x i , а в конце у i .

Исходные данные и основные расчеты приведены в табл. 2.40 и 2.41.

Таблица 2.40

Обработка показателей времени от подачи сигнала до удара по мячу в начале тренировки


Определим различие групп показателей по критерию Стью­дента:

При надежности Р = 0,95 и степенях свободы k = n 1 + п 2 - 2 = 22 + 22 - 2 = 42 по таблице приложения 4 находим t гр = 2,02. Поскольку t = 8,3 > t гр = 2,02 - различие статистически досто­верно.

Определим различие групп показателей по критерию Фишера:


По таблице приложения 2 при надежности Р = 0,95 и степенях свободы k = 22-1=21 значение F гр = 21. Поскольку F= 1,53 < F гр = = 2,1, различие в рассеивании исходных данных статистически недостоверно.

Статистический вывод. По среднему арифметическому пока­зателю различие групп показателей статистически достоверно. По показателю рассеивания (дисперсии) различие групп показате­лей статистически недостоверно.

Педагогический вывод. Квалификация футболиста существенно повысилась, однако следует уделить внимание стабильности его показаний.

Подготовка к работе

Перед проведением данной лабораторной работы по дисциплине «Спортивная метрология» всем студентам учебной группы необходимо сформировать рабочие бригады по 3-4 студента в каждой , для совместного выполнения рабочего задания всех лабораторных работ.

При подготовке к работе ознакомиться с соответствующими разде­лами рекомендуемой литературы (см.раздел 6 данных методических указаний) и конспектов лекций. Изучить разделы 1 и 2 на данную лабораторную работу, а также рабочее задание на неё (раздел 4).

Заготовить форму отчета на стандартных листах писчей бумаги формата А4 и занести в нее материалы необходимые для работы.

Отчет должен содержать :

Титульный лист с указанием кафедры (УК и ТР), учебной группы, фамилии, имени, отчества студента, номера и названия лабораторной работы, даты ее выполнения, а также фамилии, учёной степени, учёного звания и должности преподавателя, прини­мающего работу;

Цель работы;

Формулы с числовыми значениями, поясняющие промежуточные и окончательные результаты вычислений;

Таблицы измеренных и вычисленных величин;

Требуемый по заданию графический материал;

Краткие выводы по результатам каждого из этапов рабочего задания и в целом по выполненной работе.

Все графики и таблицы вычерчиваются аккуратно при помощи чертежных инструментов. Условные графические и буквенные обозначения должны соответствовать ГОСТам. Допускается оформление отчёта с применением вычислительной (компьютерной) техники.

Рабочее задание

Перед проведением всех измерений каждому члену бригады необходимо изучить правила использования спортивной игры Дартс, приведенные в приложении 7, которые необходимы для проведения нижеприведенных этапов исследований.

I – й этап исследований «Исследование результатов попаданий в мишень спортивной игры Дартс каждым членом бригады на соответствие нормальному закону распределения по критерию χ 2 Пирсона и критерию трёх сигм»

1. провести измерение (испытание) своей (личной) быстроты и координированности действий, путём бросания 30-40 раз дротиков в круговую мишень спортивной игры Дартс.

2. Результаты измерений (испытаний) x i (в очках) оформить в виде вариационного ряда и занести в таблицу 4.1 (столбцы , выполнить все необходимые расчёты, заполнить необходимые таблицы и сделать соответствующие выводы на соответствие полученного эмпирического распределения нормальному закону распределения, по аналогии с аналогичными расчётами, таблицами и выводами примера 2.12, приведенного в разделе 2 данных методических указаний на страницах 7 -10.

Таблица 4.1

Соответствие быстроты и координированности действий испытуемых нормальному закону распределения

№ п/п округ- ленно
Всего

II – й этап исследований

«Оценка средних показателей генеральной совокупности попаданий в мишень спортивной игры Дартс всех студентов учебной группы по результатам измерений членов одной бригады»

Оценить средние показатели быстроты и координированности действий всех студентов учебной группы (согласно списка учебной группы классного журнала) по результатам попаданий в мишень спортивной игры Дартс всех членов бригады, полученным на первом этапе исследований данной лабораторной работы.

1. Оформить результаты измерений быстроты и координированности действий при бросании дротиков в круговую мишень спортивной игры Дартс всех членов Вашей бригады (2 – 4 человека), которые представляют собой выборку результатов измерений из генеральной совокупности (результаты измерений всех студентов учебной группы – например, 15 человек), занеся их во второй и третий столбцы таблицы 4.2.

Таблица 4.2

Обработка показателей быстроты и координированности действий

членов бригады

№ п/п
Всего

В таблице 4.2 под следует понимать , совпавшее среднее количество баллов (см. результаты расчётов по таблице 4.1) членами Вашей бригады ( , полученное на первом этапе исследований. Следует заметить, что, как правило, в таблице 4.2 есть рассчитанное среднее значение результатов измерений полученное одним членом бригады на первом этапе исследований , так как вероятность, того что результаты измерений различными членами бригады совпадут очень мала. Тогда, как правило, значения в столбце таблицы 4.2 для каждой из строк - равны 1, а в строке «Всего » графы « », записывается число членов Вашей бригады.

2. Выполнить все необходимые расчёты по заполнению таблицы 4.2, а также другие расчёты и выводы, аналогичные расчётам и выводам примера 2.13, приведенным в 2-ом разделе данной методической разработки на страницах 13-14. Следует иметь ввиду, при расчёте ошибки репрезентативности «m» необходимо использовать формулу 2.4, приведенную на странице 13 данной методической разработки, так как выборка мала (n , а число элементов генеральной совокупности N известно, и равно числу студентов учебной группы, согласно списка журнала учебной группы.

III – й этап исследований

Оценка эффективности разминки по показателю «Быстрота и координированность действий» каждым членом бригады с помощью критерия Стьюдента

Оценить эффективность разминки по бросанию дротиков в мишень спортивной игры «Дартс», выполненную на первом этапе исследований данной лабораторной работы, каждым членом бригады по показателю «Быстрота и координированность действий», с помощью критерия Стьюдента - параметрического критерия статистической достоверности эмпирического закона распределения нормальному закону распределения.

… Всего

2. дисперсии и СКО , результатов измерений показателя «Быстрота и координированность действий» по результатам разминки, приведенных в таблице 4.3, (см. аналогичные расчёты приведенные сразу после таблицы 2.30 примера 2.14 на странице 16 данной методической разработки).

3. Каждому члену рабочей бригады провести измерение (испытание) своей (личной) быстроты и координированности действий после разминки,

… Всего

5. Произвести вычисления среднего значения дисперсии и СКО , результатов измерений показателя «Быстрота и координированность действий» после разминки, приведенных в таблице 4.4, записать в целом результат измерений по результатам разминки (см. аналогичные расчеты, приведенные сразу после таблицы 2.31 примера 2.14 на странице 17 данной методической разработки).

6. Выполнить все необходимые расчёты и выводы, аналогичные расчётам и выводам примера 2.14, приведенным в 2-ом разделе данной методической разработки на страницах 16-17. Следует иметь ввиду, при расчёте ошибки репрезентативности «m» необходимо использовать формулу 2.1, приведенную на странице 12 данной методической разработки, так как выборка n , а число элементов генеральной совокупности N ( неизвестно.

IV – й этап исследований

Оценка однотипности (стабильности) показателей «Быстрота и координированность действий» двух членов бригады с помощью критерия Фишера

Оценить однотипность (стабильность) показателей «Быстрота и координированность действий» двух членов бригады с помощью критерия Фишера, по результатам измерений, полученным на третьем этапе исследований данной лабораторной работы.

Для этого необходимо выполнить следующее.

Используя данные таблиц 4.3 и 4.4, результаты расчётов дисперсий по этим таблицам , полученные на третьем этапе исследований, а также методику расчёта и применения критерия Фишера для оценки однотипности (стабильности) спортивных показателей, приведенную в примере 2.15 на страницах 18-19 данной методической разработки, сделать соответствующие статистический и педагогический выводы.

V – й этап исследований

Оценка групп показателей «Быстрота и координированность действий» одного члена бригады до и после разминки

В любой научно-практической ситуации эксперимента (обследования) исследователи могут исследовать не всех людей (генеральную совокупность, популяцию), а только определенную выборку. Например, даже если мы исследуем относительно небольшую группу людей, например страдающих определенной болезнью, то и в этом случае весьма маловероятно, что у нас имеются соответствующие ресурсы или необходимость тестировать каждого больного. Вместо этого обычно тестируют выборку из популяции, поскольку это удобнее и занимает меньше времени. В таком случае, откуда нам известно, что результаты, полученные на выборке, представляют всю группу? Или, если использовать профессиональную терминологию, можем ли мы быть уверены, что наше исследование правильно описывает всю популяцию , выборку из которой мы использовали?

Чтобы ответить на этот вопрос, необходимо определить статистическую значимость результатов тестирования. Статистическая значимость {Significant level , сокращенно Sig.), или /7-уровень значимости (p-level) - это вероятность того, что данный результат правильно представляет популяцию, выборка из которой исследовалась. Отметим, что это только вероятность - невозможно с абсолютной гарантией утверждать, что данное исследование правильно описывает всю популяцию. В лучшем случае по уровню значимости можно лишь заключить, что это весьма вероятно. Таким образом, неизбежно встает следующий вопрос: каким должен быть уровень значимости, чтобы можно было считать данный результат правильной характеристикой популяции?

Например, при каком значении вероятности вы готовы сказать, что таких шансов достаточно, чтобы рискнуть? Если шансы будут 10 из 100 или 50 из 100? А что если эта вероятность выше? Что можно сказать о таких шансах, как 90 из 100, 95 из 100 или 98 из 100? Для ситуации, связанной с риском, этот выбор довольно проблематичен, ибо зависит от личностных особенностей человека.

В психологии же традиционно считается, что 95 или более шансов из 100 означают, что вероятность правильности результатов достаточна высока для того, чтобы их можно было распространить на всю популяцию. Эта цифра установлена в процессе научно-практической деятельности - нет никакого закона, согласно которому следует выбрать в качестве ориентира именно ее (и действительно, в других науках иногда выбирают другие значения уровня значимости).

В психологии оперируют этой вероятностью несколько необычным образом. Вместо вероятности того, что выборка представляет популяцию, указывается вероятность того, что выборка не представляет популяцию. Иначе говоря, это вероятность того, что обнаруженная связь или различия носят случайный характер и не являются свойством совокупности. Таким образом, вместо того чтобы утверждать, что результаты исследования правильны с вероятностью 95 из 100, психологи говорят, что имеется 5 шансов из 100, что результаты неправильны (точно так же 40 шансов из 100 в пользу правильности результатов означают 60 шансов из 100 в пользу их неправильности). Значение вероятности иногда выражают в процентах, но чаще его записывают в виде десятичной дроби. Например, 10 шансов из 100 представляют в виде десятичной дроби 0,1; 5 из 100 записывается как 0,05; 1 из 100 - 0,01. При такой форме записи граничным значением является 0,05. Чтобы результат считался правильным, его уровень значимости должен быть ниже этого числа (вы помните, что это вероятность того, что результат неправильно описывает популяцию). Чтобы покончить с терминологией, добавим, что «вероятность неправильности результата» (которую правильнее называть уровнем значимости) обычно обозначается латинской буквой р. В описание результатов эксперимента обычно включают резюмирующий вывод, такой как «результаты оказались значимыми на уровне достоверности (р) менее 0,05 (т.е. меньше 5%).

Таким образом, уровень значимости (р ) указывает на вероятность того, что результаты не представляют популяцию. По традиции в психологии считается, что результаты достоверно отражают общую картину, если значение р меньше 0,05 (т.е. 5%). Тем не менее это лишь вероятностное утверждение, а вовсе не безусловная гарантия. В некоторых случаях этот вывод может оказаться неправильным. На самом деле, мы можем подсчитать, как часто это может случиться, если посмотрим на величину уровня значимости. При уровне значимости 0,05 в 5 из 100 случаев результаты, вероятно, неверны. 11а первый взгляд кажется, что это не слишком часто, однако если задуматься, то 5 шансов из 100 - это то же самое, что 1 из 20. Иначе говоря, в одном из каждых 20 случаев результат окажется неверным. Такие шансы кажутся не особенно благоприятными, и исследователи должны остерегаться совершения ошибки первого рода. Так называют ошибку, которая возникает, когда исследователи считают, что обнаружили реальные результаты, а на самом деле их нет. Противоположные ошибки, состоящие в том, что исследователи считают, будто они не обнаружили результата, а на самом деле он есть, называют ошибками второго рода.

Эти ошибки возникают потому, что нельзя исключить возможность неправильности проведенного статистического анализа. Вероятность ошибки зависит от уровня статистической значимости результатов. Мы уже отмечали, что, для того чтобы результат считался правильным, уровень значимости должен быть ниже 0,05. Разумеется, некоторые результаты имеют более низкий уровень, и нередко можно встретить результаты с такими низкими /?, как 0,001 (значение 0,001 говорит о том, что результаты могут быть неправильными с вероятностью 1 из 1000). Чем меньше значение р, тем тверже наша уверенность в правильности результатов .

В табл. 7.2 приведена традиционная интерпретация уровней значимости о возможности статистического вывода и обосновании решения о наличии связи (различий).

Таблица 7.2

Традиционная интерпретация уровней значимости, используемых в психологии

На основе опыта практических исследований рекомендуется: чтобы по возможности избежать ошибок первого и второго рода, при ответственных выводах следует принимать решения о наличии различий (связи), ориентируясь на уровень р п признака.

Статистический критерий (Statistical Test) - это инструмент определения уровня статистической значимости. Это решающее правило, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью .

Статистические критерии обозначают также метод расчета определенного числа и само это число. Все критерии используются с одной главной целью: определить уровень значимости анализируемых с их помощью данных (т.е. вероятность того, что эти данные отражают истинный эффект, правильно представляющий популяцию, из которой сформирована выборка).

Некоторые критерии можно использовать только для нормально распределенных данных (и если признак измерен по интервальной шкале) - эти критерии обычно называют параметрическими. С помощью других критериев можно анализировать данные практически с любым законом распределения - их называют непараметрическими.

Параметрические критерии - критерии, включающие в формулу расчета параметры распределения, т.е. средние и дисперсии (^-критерий Стью- дента, F-критерий Фишера и др.).

Непараметрические критерии - критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий U Манна - Уитни

Например, когда мы говорим, что достоверность различий определялась по ^-критерию Стьюдента, то имеется в виду, что использовался метод ^-критерия Стьюдента для расчета эмпирического значения, которое затем сравнивается с табличным (критическим) значением.

По соотношению эмпирического (нами вычисленного) и критического значений критерия (табличного) мы можем судить о том, подтверждается или опровергается наша гипотеза. В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна - Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.

В некоторых случаях расчетная формула критерия включает в себя количество наблюдений в исследуемой выборке, обозначаемое как п. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина. В большинстве случаев одно и то же эмпирическое значение критерия может оказаться значимым или незначимым в зависимости от количества наблюдений в исследуемой выборке (п ) или от так называемого количества степеней свободы , которое обозначается как v (г>) или как df (иногда d).

Зная п или число степеней свободы, мы по специальным таблицам (основные из них приводятся в приложении 5) можем определить критические значения критерия и сопоставить с ними полученное эмпирическое значение. Обычно это записывается так: «при п = 22 критические значения критерия составляют t St = 2,07» или «при v (d ) = 2 критические значения критерия Стьюдента составляют = 4,30» и т.н.

Обычно предпочтение оказывается все же параметрическим критериям, и мы придерживаемся этой позиции. Считается, что они более надежны, и с их помощью можно получить больше информации и провести более глубокий анализ. Что касается сложности математических вычислений, то при использовании компьютерных программ эта сложность исчезает (но появляются некоторые другие, впрочем, вполне преодолимые).

  • В настоящем учебнике мы подробно не рассматриваем проблему статистических
  • гипотез (нулевой - Я0 и альтернативной - Нj) и принимаемые статистические решения,поскольку студенты-психологи изучают это отдельно по дисциплине «Математическиеметоды в психологии». Кроме того, необходимо отметить, что при оформлении исследовательского отчета (курсовой или дипломной работы, публикации) статистические гипотезыи статистические решения, как правило, не приводятся. Обычно при описании результатовуказывают критерий, приводят необходимые описательные статистики (средние, сигмы,коэффициенты корреляции и т.д.), эмпирические значения критериев, степени свободыи обязательно р-уровень значимости. Затем формулируют содержательный вывод в отношении проверяемой гипотезы с указанием (обычно в виде неравенства) достигнутого илинедостигнутого уровня значимости.
В продолжение темы:
Уголовные

Как гласит мудрое высказывание: «Все гениальное – просто!». Это можно сказать об удивительном, оригинальном и легком десерте, для которого понадобится шоколадка и слоеное...

Новые статьи
/
Популярные